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. Many methodological studies depend on the product of two dependent correlation coefficients. However, the
behavior of the distribution of the product of two dependent correlation coefficients is not well known. The

_ distribution of sets of correlation coefficients has been well studied, but not the distribution of the product of two
dependent correlation coefficients. The present study derives an approximation to the distribution of the product
of two dependent correlation coefficients with a closed form, resulting in a Pearson Type I distribution.
A simulation study is also conducted to assess the accuracy of the approximation.
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1 INTRODUCTION

Many regression- and path-based procedures depend on the product of two dependent corre-
lation coefficients. For example, the product of two dependent correlation coefficients is
needed to assess the impact of a confounding variable on a regression coefficient (Frank,
2000). Also, in path analysis the indirect effect is the product of path coefficients (Fox,
1980; Sobel, 1982; 1986). If we use standardized coefficients, the indirect effect can be
expressed as a product of two dependent correlation coefficients. In each of these cases it
would be valuable to understand the distribution of the product of two dependent correlations
to aid in making statistical inferences. There is extensive research on the distribution of a
single correlation coefficient (Konishi, 1978; Konishi, 1979; Kraemer, 1973; Olkin, 1967,
Olkin and Siotani, 1976) and on the distribution of the difference of two correlation coeffi-
cients (Choi, 1977; Dunn and Clark, 1971; Meng ef al., 1992; Neill and Dunn, 1975; Olkin,
1967; Steiger, 1980; Wolfe, 1976), but little on the distribution of the product of two correla-
tion coefficients. Thus, in this manuscript we develop an approximation to the distribution of
the product of two dependent correlation coefficients.
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We begin by recognizing the computational boundaries for the product of two dependen;
correlation coefficients. We then review extant techniques for approximating the distributioy
We then develop a more direct and more accurate approximation based on the firgt fOll1;
moments of the product of two dependent correlation coefficients and applying  thoge
moments to the Pearson distribution family (Pearson, 1895). We establish the aceuracy of
the approximation by comparing it with simulated data. We also graphically compare gy
results with those of Frank (2000), and then identify possible extensions.

2 EXTANT KNOWLEDGE OF THE DISTRIBUTION OF
THE PRODUCT OF TWO CORRELATIONS

Let X'and Y be bivariate random variables both correlated with the third variable C; and Fan Py
and r,, be the sample correlation coefficients between X and ¥ between X and C, and between
Yand C, respectively. From Cohen and Cohen (1983, p. 280), we know that the product of two

dependent correlation coefficients, Txclyes 18 constrained by the upper and lower limits

Py = (=12 = 72) < rerye <1+, /(1 — r2) (1 — r). @2.1)

However, beyond this constraint, little is known.

There are two extant approaches for obtaining the distribution of the product of two
correlation coefficients. Mathai and Saxena (1969) express the product of two correlation
coefficients as a special case of the product of two generalized Mellin-Barnes functions or
H-functions (Mathai and Saxena, 1978). However, the expression obtained for the distribu-
tion function is quite unwieldy. In addition, in their study, the two correlation coefficients are
assumed independent, while we are interested in two dependent correlation coefficients.

The other approach is described in Frank (2000). Frank transforms the two correlation
coefficients into two asymptotically, normally distributed Fisher z’s, then uses Aroian and
colleagues’ (Aroian, 1947; Aroian et al., 1978; Cornwell ef al., 1978; Meeker et al., 1981;
Meeker and Escobar, 1994) findings regarding the distribution of the product of two normal
variables to obtain the distribution of the product of two Fisher z’s, instead of the two original
correlation coefficients. In this approach, however, we do not have a closed form function for
the distribution and we do not know how stable the Fisher z transformation is. Moreover, we
are interested in the product of two original correlation coefficients, while the behavior of the
distribution of the product of two Fisher z’s is detached from that of two original correlation
coefficients. That is, Frank’s approach relies on asymptotic theory for Fisher’s z, compounded
with the approximation error associated with Aroian’s approach, which results in very slow
convergence to an asymptotic result. :

Following Hotelling’s (1936; 1940) and Ghosh’s (1966) approximations to the moments of
the distribution of a correlation coefficient, the present study derives a more accurate approxi-
mation to the distribution of the product of two dependent correlation coefficients with a
closed form, resulting in a Pearson Type I (Beta) distribution. A simulation study is also con-
ducted to assess the accuracy of the approximation.

3 APPROXIMATION PROCEDURES

According to Pearson (1895), most distributions can be accurately characterized using the
first four moments. Based on this principle, our approximation procedures have two steps.
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First, we obtain the first four moments of the product 7,#y.. Then, we apply these moments to
the Pearson distribution family (Pearson, 1895), obtaining an approximate distribution of
as a Pearson Type I distribution.

I'xclye
3.1 Moments of rycrye

Let Prys Pxe a0 Py be the population values of 7y, 7xc and e, respectively. Let Aryy, Arse
and Ary, be the deviations of the sample values from their population values. In particular,
Aty = Ty = Prgs Bsec = Fre =~ Pxo and Arye = rye — Py Then, we have

Feelye = PrePye T PucAye + PycBrre + ArxeArye;

(rerye)? = P20 + PRu(Are)? + P2(Aro) + (Are)(Arye)” + 2050y Ay
203002 + 20, (AT Arye + 29 Aric(B7ye) + 4010y Arse ATy

(rerse)® = P03+ PL(Are) + pL(Aree) + (Arse)*(Arye) + 303,L ATy + 30305 (Arye)
3020 A + 30y (Or) + 30 AT (A1)’ + 3ps(Are) (Aye)’
302 (Arse) Ay + 30, (Arse (Brye)’ + 9P Arselirye + 9p2 Py Ars(Brye)’
+ 90 (Bl Ay + 9Py (Brsc) (Brye )

ety = P+ PL(Are)* + Pl (Br) + (A (Brye) + ApLploArse & 4Prcpyelre
+ 493 (Areo) Arye + 40, (A7) (Brye)* + 407 po(Arye)’ + 4p3 Arso(Arye)*
- 4p (A + 80, (Ar) (Brse) + 6p%pl(Are)’ + 6pplo(Arse)
+ 602, (Aree) () + 692, (Are) (Arye) + 160303, ArcArye
1 1602,p,o A7 (A7) + 169, P2 (Arscl* Aty 4 160,00, (Arse) (Aryc)’
2803, P2 Aro( A -+ 240202 (ArseY Ao + 24070, (Arse (Arse)®
+ 240, P2 (Ars) (Arye)? + 369205 (Arse ) (Arye).

Dropping the terms of order higher than the fourth! and taking expectations of
(raetye),1=1,2,3, 4, give us the approximate first four non-central moments as follows

Uy = E(rectye) = PrcPye + PxcErye) + pycE(Arse) + E(AryeATye);
1y = El(rerse)’] = pRp% + P70l ] + P EL(Aree)'] + E[(Ar:) (Arye)’]
+ 2020, E (A7) + 2o PLE(Arse) + 20, EN(AT5e) Aryel
o 20, Bl A7 (Arye)’] 4 4oy E(BrscArse);
1y = El(rersel’] = 0202 + PLEWAR? 1+ 9 E[(Arse)’) + 3700, E(Arse)
+ 3039, E[(Ar)?] + 3050 (M) + 30 EL(ATe) T + 302 E[Ars(Arye)’]
+ 32 E[(Are)* Aryel + 9050 Py E(Arscrye) + 9020, EATso(Aryc)’]
+ 99,2 LA Arse] + 9oy EL(B7se Y (A1)

ISince we only want to obtain the approximate first four moments, the terms of order higher than the fourth will
have little effect on the approximation.
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Ha = Ellreere)'] = oo + PLEI(Are) '] + pfLE(Ar) '] + 40t 03 B(Ar, )
40P (Bric) 1 4ppy EUALC) )+ 40, ENAR ) + 608 02 Bl (s,
605 EL(ATe Y] + 16033, E(AreArye) + 1603, py BT Ao (A, )]

+ 160, P EI(Aric)’ Arye] + 2492, p2 E[Arc(Arye] + 2405y El(Ar P Are ]

+ 36p§cp§cE[(Arxc)2(Aryc)2].

3.1

In order to obtain closed form expressions for the first four moments, we need to expresg
EWAro] i =1,2,3, 4, E[(A7Y1,) = 1,2, 3,4, and B[4 Ao/l 1= 1,2, or 3 5
terms of p,, p,,, or Pryr

First, we define some notation and obtain some preliminary results that will be used to
simplify our final expressions of the first four moments. Assume three initial variableg X
Y, and C follow a trivariate normal distribution. Then, following Ghosh (1966) and
Hotelling (1936; 1940), the moments and the covariance of Fxe and 7y, can be approximately
expressed as follows

p(1 —p?) 9 2 3 2 4
= =p, -t Tely1, 7 —— (121 +7
ty, = E(r,) = p, 5 +7 (3+p,)+8 5 (121 + 70p% + 254
3
— 492352 4 29250* 4 12255
+64 5 (6479 +4923p7 + 0, + £,)

+ Tganze S341 -+ 772607 + 58270 + 352205¢ + 19845,5) };
1-p)

o2 = Var(r) = £l — 1 = L2 :

1
1+— 11p2) +—— 2
{ g 14+ 1100) + 55 (98 + 13052
1

a7 (19208

1
+750%) + S @744+ 4645p% + 4422p% + 25650%) +

+37165p] + 444995 + 4029995 + 26685p§)} ;

e = E[(r, — 11 )3]:_M 6+i(69+88p2)+i(797+1691p2
e * M2 M > am? °

3
+ 1560p%) + 5 (12325 + 3314792 + 488099

+ 44109pf)};
@ 4 30— pD* 1 a1 ,
0,) =E[(re — p, )1 = 7 ! +7(12+3507) + 25z (436 +2028p]

+3025p%) + 4—;1-5(3552 + 2000902 + 46462p* 4 59751 pf)};

Orestye = Cov(rye, r yc) = E[(ry. — ,urm)(r ye — .uryc)]
1 1
=7 [pxy(l = Pl = Pe) = 5 Prchye(l = pl = P2, — pfy)J,
3.2)
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where M =N+ 6, N is the sample size; the subscript “e” represents xc or yc; and the super-
seripts “(2)”, “(3)”, and “(4)” represent a variance, a third moment, and a fourth moment,
respectively (as distinguished from quadratic, cubic, and quartic powers).

Next we can express E[(Ar.)i], i=1, 2,3, 4, and E(Ar,Ar,) as

E(Ary) = E(re — p,) = liy, — P, Which will be referred to as b, ;
E[(Ar,)] = E[(r — po)*1 = E{[(rs = 1,,) = (1, = pII*}
= E[(re — P14 (y, — pY = 08 + b7
E[(Ar)’] = El(re — p)*] = E{[(re — #,,) — (i, = p)T'}
= E[(re = 1,1 = 3(tty, — POEL(re — 1,1 = Gy, = )’
= af) - 3091),_ —b3;
E[(Ar)*] = El(re — p)*1 = E{[(re — 1) — (ty, = p)I*}
= E(ra — "] — 41, = pIEL(s — 1,)']
+6(u,, — PV El(re — i1+ (1, — p)'
— o0 — 46D, + 608, + bl
E(ArscArye) = E[(Fxe = Pac)(Fye — Pye)]
= E{[(re — ty,.) = (U, — Pz (3c — ) = (b, — P31
= E[(rve — tr,)ye = iy )1+ (i, — Prc)(thy, = Pyc)

- O-rxc,ryc + brxcbryc'

(3.3)

We also need the expressions for the third and the fourth order product-moments,
E[(Arxc)S(Aryc)’], s, t=1, 2, or 3. After a few simplifications, we first have

E(AriArArAr)) = E[(ri — p)(r; — p)rx — o)t = pp)]

= E{[(ri — 1) + (r, — I — 1) + (7, — )]
X [k = M) + (r, — PN — 1) + (i, — 0D}

= E[(ri — p,)(rj — te )k — 1 )1 = pp)]
+ b E[(ri — )y — )0k = thy)]
+ b E[(ri — w17 — 1)1 = 11)]
+ by E[(ri — py )k — e )1 — H)]
+ b E[(rj — 1, ) — )1 = Hy)]
+ by b El(ri — )5 — )]+ bybr El(ri — i) = )]
+ by, by EN(ri — 1)1 — e )] + b D EL(ry — )0k — )]
+ by by By — 1y )1 = )] + b b EL(ric = )11 = b))
+ byby,byby,

= OOt T OrinOrin + OrinOryie + 07, b by, + Criribr,bry

+ Gy b by, + Oy briory - Oryribrbr + O bribyy + brby;bribr»

3.4)
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where the indices i, j, k, and / can be xc or ye. Anderson’s [1958, p. 39, Egs. (25) ang 26)
formula were applied to the last equality in (3.4).2 By the same fashion, we further hay,

j

E(ArAryAry) = E[(r; — P — Pj)(” k= Pl = iy br + Oriri by, + by, + b.b, b \
i1V

(3.5)

Then, in (3.4) letting i =j =k=xc and =y, letting i =xc and j =k = I=ye, and letting

i=j=uxcand k=I=yc, respectively, give us the desired expressions for the fourth ordey pro-
duct-moments as follows

E[(Are)’ (Arye)] = 36P0, .. + 302y br,, +30, 5 B2+ b,

Txe Tye»

E[(Aer)(AryC)3] - 30‘5‘3‘;)0-rxc:ryc + 3U£33brmbryc + 3O.rxc,rycbfy¢ + brxcbzyc;

El(Aref (4rof'] = 020@ +202 , + 0202 + @82 3.6)
2
+ 4o rxc,rycbrxc bryc + bfm bryc'

And, in (3.5) letting i =j =xc and k=yc and letting i =xc and j = k=yec, respectively, give
us the desired expressions for the third order product-moments as follows

E[(Are)(Ary)] = 0@bs,, + 20,y by, + B2 b, ;
BlAre)(Arse’) = 00br, + 2071, by, + by, 2]

Fye®

Fxe

(3.7)

Applying (3.3), (3.6), and (3.7) to (3.1), we obtain the approximate first four non-centra]
moments of 7,7, as follows, in terms of p,, and Py and the moments and the covariance
of 7. and 7y, that are the functions of Pxes Py, and py, [cf. Eq. (3.2)],

'u/l = E(}”xc?‘yc) = (brxc + pxc)(bryc + pyc) + a.rxc:ryc;
1= E@erse)” = [(br,, + b + 0By + o) + 0]
+ 4(brxc + pxc)(bryc + pyc)o-rxc;ryc + 20-2

Fxestye?
My = Eretye)’ = =b) 3, + 8, (3b,, = p,pl + pRupls + 3p,p 0@ + 303.Py00
+ 9chpyc0'(2)0(2) + picagi) + pfma(3 + 9[,0360%) + pic(pf,c + aﬁi))]armryc

Txe ” Tye Tye

+ 18pxcpyco-2 + 3b2 pxc(p)zccpyc + 3pyco.£fc) + 3pxco'rxc,ryc) + 3b;2~mpyc[pxc(3brz'yc

Fxestye Tye

+ 3b"ycpyc + p)zzc + 30'5*?) + 3pyco-rxc,ryc] + 3brycpxc[3p§(}0-(2) + pic(pjzzc - O-f‘fc))

Txe

+ 6pxcpyco-rxc,"yc] + 3b”xc {bfycpyzcc + 3b;2*ycp§cpyc + 3bryc [pjzzco-(Z) + pazcc )ch + O.f‘fc))

Txe

+ 40Ol + Prel =308 + 070) +30D) + 6p,p,.05 11
My = Elreryo)* = B, py, +4b] (4by,, — p, )2, + b p — 48 pop”,

t Prebre + 00epl o) + 690 +36p%,p2,0D6D + 4p. ot 6O

T 405P 05 + 008 + 0D + 169, [3p%0D + pL (02 + 1)

2 2
+ 72000307, + 6B, pLI6BE P2+ 4b, .02
+ 6p§ca(2) + p)%c )ch + 0.%22) + 8pxprCO-rxc:ryc]

Fxe

+ 657 pl[pLo@ + p2 (0%, + 662) + 80,.9,.05.,.]

Ve

2Anderson’s equations were tactically used here only for obtaining the higher order product-moments, although
Anderson’s equations are based on the normal distribution.
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+ 4brxcP§c[—3pxcP§c°’g¢) + pic ic + 665’35)) - pJchJSc) + lzpazccpyco-rxc,ryc]
- 4bypo 4B} 3, + B2 paohly + 4br Py (30300 + PPy + 307)) (3.8)

Txe Fxe Txe Tye

+ 9pxcpyco.rxc;ryc] + pxc[6p§’1co-(2) + pyzcc(p;c - 3pyco-£"fc) - O-g'i)) + lszcpico-rxc;ryc]}'

Txe

The derivations for the formulae (3.8) were generated by Mathematica (Wolfram,
1999; cf. Appendix A). We could further substitute (3.2) into (3.8) and obtain direct
expressions for the first four moments of 77, in terms of Prer Pyes and py, as well as
the sample size N, but this is not advisable because the formulae would be much more
complex. For the central moments about the mean, substitution in Kendall and Stuart’s
equations [Kendall and Stuart, 1977, Eq. (3.9), p. 58] gives (also see Appendix A for
the Mathematica code)

o = by — 1P = (B + P02+ 0Dy + p,0) + )]

Tye Fxc Ty

+ z(brxc + pxc)(b"yc + pyc)grxc,ryc + Uiz’xc,ryc;
M3 = “g - 3,LL/1/1/2 + 2/’L,13 = —Zbivcpic - 3b3ycpxca£i) - 6brfcpico.(2) - 3brycpxco-g¢)o-gc)

Fye

+ 6020 D — B} [} + 38 pye + 205+ 3(r,. + Py )o 1+ pl oD + plol)

Fxe  Tyc Fxe
- 3[—2p’2c00'§33 + U%)(bzyc + 2brycpy6’ - 2:Dic + O’g‘fc))]o-rxcyryc - 6pxc(2bryc - pyc)o-zmryc
— 46} =38 (b pee B, +30D) + [3br (bry. +20,0) + 010

Fxestye
3t {5+ 35+ 20+ + I~ 20,08, + 02,
- 4(brxc + pyc)az };

Fxestye
o =y — A1ty + 621ty — 3y = b (8%, + 60702 + 690000
(2)]

+ b} [3b) +126; pye+ 6B, py. + 4bs,. Pl + 8%, + 6(br,. + Py
LD & 0 4030, 002, — 202 — 30D + PG

xc Fxe
— agc))]arxc,ryc + 6[p§c(2pic — 5651)) + aﬁi)(—Spic + aﬁfc))]afmryc - 36ch/7yc0'3m,ryc
+90% =48 Po(B3prcPyc0 + 25O =300, ) + 4, (e [30)
2 2
+3b)_pye — 307, (P — 209) —3p3,00) + by, (203, + 30,0 )] + [6b;, + 18Dy pye

— 2%, + 30,02 4 3, 2% + O} + 68 [03.(405% + 0)07)

Fxe

+ Qo2 + 6(2))63”%] + 6bfm (b} p2, — ZbEYE p,zwpyc + bfn o? + 4bfyc pycagc)

Fxe Fye Txe

+ 4p* a@ — 6by, pprycagzc) + b2 0Pe® + 2by,, pyca(z) o® 4 pﬁca(z)o’(z)
¥ »

Fxc Fye  Txc  Tye Txe " Tye Fxe  Fye

+ 6brycpxc(2p5c + b"ycpyc - 2,030 + O’s‘ic))o-rxc:ryc + (8b}%yc + 16brycpyc + 2p327c

+ D)2, 1+ Ay ABS Pl 25, plopye + 38 pucr) + 37, PrePycOre
— 902 0D o by, o0+ 6Dy PO 3, pac o)

2 2 (2) (2 3 (3 4 (3 3 (3
— 3bryc chpyco'gxc) O-gi) - 6pxapyco.£x30-§yc) - bryc pyco-g'w) - 2pyc0-£ﬂ) - bryc pyco-gu)

- picpycagc) + 3[2biycpyzcc - 6b3ycp§cpyc + biycai) + 3b3ycpyc5§3 - 3brycpico'£i)
- p;co-a) - (bryc + pyc)(?’p)zcc - qg‘c))a(z)]o'rxc,ry: + 3pxc(8b;2~yc - 2brycpyc - 4p5a

Fxe Fye
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+oe? 4 9., + pyc)aic’ryc} —4b,, [Zpic aﬁi) +3 pic aﬁfc)o,mryc

e FreoFye
= 30020 + oD 120, )+ (0 4 97, g

Fre  Fxestye Yxe " Fye Txeslye Fxe arxca"yc (3 9)
— 356950 — 953
30y e Oree = 907, ).

Note that, by definition, the first central moment u; =0.

3.2 Pearson Distributions

The four moments only give us a general idea about the characteristics of the distribution of
the product of two dependent correlation coefficients. To better understand the distribution of
the product of two dependent correlation coefficients, we need to explore the shape of the
distribution. Since the Pearson distribution family (Pearson, 1895) provides approximationg
to a wide variety of observed distributions using only the first four moments, in the present
study the Pearson distribution family is employed to obtain an approximate distribution for
the product of two dependent correlation coefficients,

The types of frequency curves in the Pearson distribution family are characterizeq by
B-coefficients, f; = y2/p3 and B, = pu,/ #3. In particular, after obtaining f, and B, from
the first four moments, we can plot the couplet (B;, f,) on the (B1, B,) plane illustrated in
Pearson and Hartley (1972, p. 78). From the (B, B,) plane we can identify the type of
Pearson distributions to which the observed distribution belongs. Instead of referencing
the (B, B,) plane, we can also distinguish the types of Pearson distributions by evaluating
the criterion x (kappa) (Kendall and Stuart, 1977, Eq. 6.10)

o BB +37
446, 3B, 35, — )

(3.10)

with the specifications illustrated in Figure 1 (cf. Elderton and Johnson, 1969, p. 49).
Type I distributions are beta distributions and type III distributions are gamma distributions.
Pearson and Hartley (1972, pp. 261-285) have tables for percentage points of Pearson curves
for given B, and f,. Elderton and Johnson (1969) provide mathematical expressions for
Pearson distributions with formulae for the parameters in terms of the first four moments.

3.3 Approximate Distribution of Pxelye

In order to apply the first four moments of Fxctye 10 Pearson distributions, we begin by noting
that p.. and p,. are dependent, that Pxy 18 constrained by PrcPye £ /(1 — p2)(1 = p2)

Kzljo <0 K'=|0 0<x<1 K=|1 o1 K=Ioo
| Typel | Typerv Type VI |
Type III Normal curve Type V Type III
(B=-3)*
Type I or VII

(B <3 or> -3

FIGURE 1 Specifications of x for distinguishing the types of Pearson distributions. (*Originally, they were
“B=3"and “B, <3 or > 3” in Elderton and Johnson (1969, p. 49), but according to the expression (3.10) (from
Kendall and Stuart, 1977, Eq. 6.10) and the expression (4) in Elderton and Johnson (1969, p. 41) they should be
“Bp=-3"and “B, < -3 or > —37, respectively.)
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(cf. Cohen and Cohen, 1983, p. 280), and that p, p,.p,, > 0 because p,.p,, always has the
same sign as p,. In addition, without loss of generality, we assume that p.., py., and p,, are
not —1, 0, or 1, the extreme cases.

Under these conditions, we might be able to theoretically prove that the criterion x < 0,
put for simplicity, we only numerically evaluated the criterion k. We evaluated x value for
all possible conditional triplets of p,., py., and p,, with an increment of 0.10 for each corre-
lation coefficient and we found that the larger N, the more likely is « to be negative. When
N > 300, all values of x are negative under the conditions mentioned above. Note that the
values of x are approximate, since the B-coefficients are evaluated by the approximate
moments. As N approaches infinity, the approximate value of x will approach the true
value which will be negative, as observed by examining the numerical trend of k¥ as N
increases. Thus, by referring to Figure 1, we can conclude that the distribution of the product
of two dependent correlation coefficients, 77y, can be approximated by a Pearson Type I
distribution. Correspondingly, the density function is (cf. Elderton and Johnson, 1969;
Kendall and Stuart, 1977)

my ny
r&=p(1+2)" (1-5)", o skze =T
1

@ a a’

where k= ry.y., and

atay? 1

fo= (a1 + apy" ™ L Bimi + 1, my + 1)

@i+ a> = 3\ 1alBy(s + 27 + 166+ D)

R )
6438, — 2B,

and m, and m, are given by

s—2is(s+2) I
2 2 Bi(s+27 +16(s +1)

with my < my if g3 > 0 and my > my if py < 0. Note that this provides an approximate dis-
tribution for the product of two dependent zero-order correlation coefficients. The results
hold for the product of two dependent partial correlation coefficients. It is evidenced by
Fisher’s (1924) finding that the distribution of the sample partial correlation is that of the
zero-order correlation coefficient.

4 ACCURACY OF THE APPROXIMATION

Equation (3.1) in Section 3.1 gives us expressions for the first four moments of 7.7y, in terms
of the moments and product-moments of the original correlation coefficients, 7, and 7y..
Then, by applying approximations to the moments and product-moments of the original cor-
relation coefficients, this current study obtains approximate expressions for the non-central

3For N <300, p,. or p,. must be greater than 0.10 for k to be negative. For smaller correlations, e.g., pxc and
Pre<0.10,0<rx<1; and the distribution of the product of two dependent correlation coefficients, 7y, can be
approximated by a Pearson Type IV distribution (cf. Fig. 1).
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moments and central moments of the product ,.#,.. However, we do not know how accurate
the approximation is for practical purposes. Therefore, we now conduct a simulation study to
assess the accuracy of the approximation.

4.1 Simulation Design

The parameters in this simulation study are the sample size N and the population correlationg
Pxe> Py and p,,. For p,., Pye> and p,,, we choose 0.10, 0.30, and 0.50 as small, medjum, and’
large correlations (see Cohen, 1988); and for the sample size, we select 28, 84, and 783
which correspond to a statistical power of 0.80 for small, medium, and large correlaﬁon;
in the social sciences (Cohen and Cohen, 1983). Table I shows the parameter specificationg
for this simulation study.

As can be seen in Table I, we do not need to include every possible combination of 0.10
0.30, and 0.50, because Pxc and p,. are symmetric in the mathematical expressions in’
Section 3. Therefore, we have removed duplicate cases. In addition, under the condition
PxcPycPxy > 0, without loss of generality we can change the sign of the relevant variable to
have all three correlations positive. Thus, there are only 18 positive correlation triplets
needed for this simulation study. Multiplied by the three magnitudes of N, we have
18 x 3 =54 cells to simulate.

For each of 54 cells (i.e., for each set of N, p,,, Pyes Piy), by Cholesky factorization, we
generated X, ¥, and C with the specified population correlations (cf. Browne, 1968) and
with the sample size as N, For simplicity, we generated (X, ¥, C) as a trivariate standard nor-
mal distribution given values of Pxes Pye> and p,,. Then, we computed the pair of estimated
correlation coefficients 7, and ?yc.4 Within each cell, the same procedure is replicated
1000 times, resulting in 1000 pairs of 7. and 7, values. Directly multiplying 7., and Pye gen-
erates a simulated distribution of the product Fxctye Which serves as the true distribution of

TABLE I Parameter Specifications for the Simulation Study.

N

Pre Pre Py 28 84 783

0.10 0.10 0.10
0.30

0.50

0.30 0.10

0.30

0.50

0.50 0.10

0.30

0.50

0.30 0.30 0.10
0.30

0.50

0.50 0.10

0.30

0.50

0.50 0.50 0.10
0.30
0.50

*Here, and later, we use “~  to distinguish the simulated values from the corresponding observed values.
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Fucl'ye> With which the approximation can be compared. The 1000 replications are sufficiently
Jarge to yield precise results of the moments for the simulated distribution.

4.2 Moments Comparison

Tables 1 and TII show the simulation results for the first four moments that were computed
using the following formulae:

1 1000
/Jll = 1‘066 1:21 (Fcye)i
ﬁz = TAnn [(;xc;yc)' - lﬂlll]
1000 — !
1:‘3 = Thnn [(’~”Jcc77 yc)' - /1/1]
1000 = !
1 1000

_ ~ 4
Hyq = 10001221 [(rxcryC)i lul]

Tn order to quantify the accuracy of the approximation to the first four moments, the rela-
tive differences [relative difference (rel. diff.)= (approximated — simulated)/ simulated]
between the simulated values and the approximated values® for the four moments are also
listed in Tables II and III. The rationale of using the relative difference, instead of the abso-
lute difference as did Ghosh (1966) for his approximation study, is that the relative difference
would provide information not only about whether the approximated value overestimates or
underestimates the true or simulated value, and also about whether the difference is big or
small relative to the true or simulated value.

As can be seen in Table II the approximation method proposed in this present study yields
very accurate approximated values for the mean and the variance. We acknowledge that the
approximation is not very favorable to the third and the fourth moments for certain cells,
which is evidenced by several large relative differences in Table III. But, if we examine
the absolute differences for third and the fourth moments, the approximation would still
very encouragingly yield values of the third moment correct to three decimal places when
N=28, four decimal places when N =284, and five decimal places when N =783; and the
approximation yields values of the fourth moment correct to four decimal places when
N=28, five decimal places when N=84, and seven decimal places when N=783.
Therefore, in general, the approximation is adequate and useful.

4.3 Distribution Comparison

We have compared the approximated distribution of the product of two dependent correlation
coefficients with a simulated distribution in terms of the first four moments. However, we
usually use p-values obtained from the shape of a distribution, rather than the moments, to
make statistical inferences. Thus, it is more desirable to compare the shape of the approxi-
mated distribution with the simulated distribution to validate the statistical decisions that
would be made based on the approximated distribution. After obtaining the distribution

>The approximated moments were calculated by SPSS (see Appendix B for the SPSS code). To make the mode
clearer, we computed Egs. (3.3), (3.6), and (3.7) and substitued them into (3.1), instead of directly using the more
complex Eq. (3.9).
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TABLE 1l Comparison Between the Simulated Values and the Approximated Values for the Me:

Variance i [Relative Difference (Rel. Diff.) = (Approximated — Simulated), Simulated]. 4 i and the

N=28 N=84 N=7383

Pre Pre Py Simulated Rel. diff: Simulated Rel. diff. Simulated Rel. dif

Mean g )
0.10 010 010 0.01623754  —0.052835  0.01039807 0.049849  0.01003714 0.006802
0.30 0.02270585 —0.068254 0.01264837 0.035598 0.01028838 0A006410
0.50 0.02905664 —0.072696 0.01490883 0.025251 0.01054522 0:005551

030 0.0  0.03578902  —0.043999  0.03020888 0.009964  0.03001761 0.00143¢
030  0.04185949  —0.055322  0.03231504 0.006442  0.03025353 0.001218
0.50  0.04786088  —0.061688  0.03449961 0.001457  0.03049761 0.000785

050 010  0.05481586  —0.032350  0.05055207  —0.009008 0.04996783 0.000945
030  0.05994305  —0.041518  0.05235884  —0.011373 0.05016661 0.000768
0.50  0.06503751 —0.047858  0.05434098  —0.016355 0.05037164 0.000520

030 030 0.0  0.09383205  —0.026557  0.08954873  —0.000291 0.08968169 0.003026
030  0.09950354  —0.032501  0.09130437 0.000882  0.08987289 0.003255
050 0.10507749  —0.035903  0.09306646 0.002371  0.09009245 0.003219

050 010 0.15151819  —0.017163  0.14949675  —0.005373 0.14962453  0.001597
030  0.15634273 —0.021531 0.15092247  —0.004609  0.14978847 0.001663
050  0.16115526  —0.024470  0.15245153 —0.004098  0.14998773 0.001549

050 050 010 024873705  —0.012193  0.24891337  —0.005225 024935434  0.00157¢
030 025291764  —0.015729  0.24998378  —0.004595 0.24940893  0.001919
050  0.25712597  —0.018112  0.25104010  —0.003472 0.24952249  0.002064

Variance i,
010 010 0.10  0.00200730 0.037670  0.00038261 0.031499  0.00002809  0.031684
030  0.00219837 0.027718  0.00042955 0.040782  0.00003298  0.033141
0.50  0.00243679 0.027167  0.00048174 0.056867  0.00003797  0.035028

030  0.10  0.00470786 0.005337  0.00135638  —0.026224  0.00012860 0.014137

0.30  0.00507615 0.003536  0.00147154  —0.016190  0.00014181 0.017404

0.50  0.00549659 0.003344  0.00159487  —0.007034  0.00015512 0.020739

050 010  0.01002729  —0.002493  0.00331846  —0.054253 0.00032274  0.016964

030  0.01050633  —0.004095  0.00348151 —0.049782  0.00034106  0.018205

050  0.01102304  —0.004795  0.00366409  —0.048634  0.00035930 0.020456

030 030 0.10 0.00682378  —0.027794  0.00206342  —0.041535 0.00019589  0.031273
030  0.00759283  —0.008360  0.00236165 —0.019920  0.00023303 0.031095

0.50  0.00836145 0.015851  0.00266361 0.000857  0.00027119  0.030466

050 010  0.01045024  —0.013348  0.00349269 —0.076511 0.00032802  0.026593

030  0.01151447  —0.000238  0.00392298  —0.060967  0.00037966 0.025120

0.50  0.01260161 0.015748  0.00437117  —0.046687  0.00043340  0.02445]

050 050 010  0.01120022  —0.023076  0.00377413  —0.099475 0.00033973  0.040055
030 0.01272200 —0.015668  0.00435511 —0.080283  0.00040817  0.036321

0.50  0.01419075 0.005668  0.00495852  —0.058024  0.00048330  0.032545

function for the approximated distribution of the product of two dependent correlation
- coefficients as a Pearson Type I distribution, the distribution comparison becomes achievable.
A P-P plot is employed for this comparison.

A P—P plot, a probability plot, is a graphical tool for assessing the fit of data to a theore-
tical distribution (Rice, 1995, p. 321). Specifically, for a given sample data X, ..., X,, we
plot Xy versus F(i/(n + 1)), where X, i=1,..., n, are the order statistics of X,...,
X,, and F is the cumulative distribution function of the theoretical distribution.

Although we do not know the theoretical distribution of the product of two dependent cor-
relation coefficients, we have the approximated Pearson Type I distribution. Then, we can
compare the simulated distribution with the approximated Pearson Type I distribution to vali-
date the approximation of the distribution of the product of two dependent correlation coeffi-
cients to the Pearson Type I distribution. Thus, here in the P—P plot, we will plot the quantiles
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TABLE III Comparison Between the Simulated Values and the Approximated Values for the Third Moment 3 and
the Fourth Moment 4 [Relative Difference (Rel. Diff.) = (Approximated — Simulated)/Simulated].

N=28 N=84 N=783
Prc Pre Py Simulated Rel. diff. Simulated Rel. diff. Simulated Rel. diff.
Third moment us
010 0.0 0.0 0.000102612 -0203163 0.000010500  —0.099905 0.000000108 0.027778
0.30 0.000158858 —0.456691  0.000015611  —0.225482 0.000000151 0.026490
0.50 0.000213329 —0.585973  0.000020994  —0.287701 0.000000197 0.040609
030 0.10 0.000229896 0.045403  0.000032053  —0.185755 0.000000127 1.354331
0.30  0.000342621 0.013134  0.000047655 —0.143741 0.000000288 0.684028
0.50 0.000460741 —0.000677 0.000064406 —0.117567 0.000000461 0.501085
050 0.0 0.000312498 —0.074032 0.000051326 —0.401726 —0.000000203  —2.714286
0.30  0.000528974 0.018260  0.000082326  —0.245645 0.000000128 4.718750
0.50 0.000761741 0.051549  0.000116846  —0.182702 0.000000506 1.260870
030 030 0.10 0.000400153 0.330803  0.000052947 0.039738 0.000000605 0.016529
0.30  0.000514982 0.373980  0.000072472 0.071917 0.000000801 0.117353
0.50 0.000637833 0.429043  0.000093117 0.122760 0.000000992 0.240927
0.50 0.10 0.000332125 0.584187 0.000054061  —0.042508 0.000000137 3.124088
0.30  0.000484532 0.606443  0.000075321 0.102521 0.000000275 2.436364
0.50  0.000656781 0.633975  0.000098774 0.216727 0.000000389 2.601542
0.50 050 0.10 0.000186486 1.628498  0.000027162 0.688499 0.000000545  —0.100917
0.30  0.000223523 2.193215  0.000031018 1.349313 0.000000710 0.146479
0.50 0.000281911 2.528103  0.000041201 1.608966 0.000000774 0.595607
Fourth moment fi4

0.10 0.10 0.10 0.000025395 —0.963300 0.000001057 —0.848628 0.000000003  —0.333333
030 0.000033559 —1.040466  0.000001517  —0.933036 0.000000004  —0.250000
0.50  0.000043744 —1.111032  0.000002080 —1.023077 0.000000006  —0.333333
030 0.10 0.000091691 —0.583961 0.000007925 —0457287 0.000000053  —0.056604
030 0.000109363 —0.667127  0.000010005 —0.518941 0.000000064  —-0.046875
0.50 0.000132794 —0.787121  0.000012543  —0.595950 0.000000077  —0.064935
0.50 0.10 0.000332066 —0.239353  0.000037124  —0.246283 0.000000327 —0.018349
030 0.000366214 —0.269681  0.000042258  —0.274410 0.000000364 —0.013736
0.50 0.000417883  —0.349947  0.000048534  —0.320600 0.000000401  —0.004983
030 030 0.10 0.000152673 -0.309105 0.000015310 —0.288243 0.000000116 0.051724
030 0000188228 —0.331141  0.000020430  —0.290651 0.000000166 0.030120
0.50 0.000229483 —0.385510  0.000026042  —0.295676 0.000000227 0.013216
0.50 0.10 0.000325797 —0.077895 0.000039028  —0.213206 0.000000332 0.024096
0.30  0.000378532 —0.022585  0.000049363 —0.193161 0.000000447 0.013423
0.50 0.000444161 —0.008573  0.000061049  —0.178660 0.000000583 0.010292
0.50 0.50 0.10 0.000349379 0.072314  0.000043661  —0.190811 0.000000342 0.096491
0.30  0.000432846 0.125086  0.000057562  —0.151263 0.000000499 0.078156
0.50  0.000517932 0.196458  0.000073253  —0.101743 0.000000703 0.064011

of the Pearson Type I distribution against those of the simulated distribution for the product
of two dependent correlation coefficients. Due to the complexity of the calculations of its
mathematical function for obtaining every quantile of the Pearson Type I distribution, we
used the common 15 percentiles, 0.25%, 0.5%, 1%, 2.5%, 5%, 10%, 25%, 50%, 75%,
90%, 95%, 97.5%, 99%, 99.5%, and 99.75%, whose quantiles can be looked up in Pearson
and Hartley’s table (Pearson and Hartley, 1972, Tab. 32). Setting i/(n+ 1) =0.25%, 0.5%,
1%, 2.5%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, 97.5%, 99%, 99.5%, or 99.75%, and
noting that #=1000 in this (simulation) study, we obtained the corresponding ith order
statistic X, in the simulated distribution. Therefore, in our P—P plot there are only 15 points,
instead of 1000 points, each corresponding to one of the 15 percentiles above.
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FIGURE 2 P-P plots for the selected cells.

We argued in Section 3.3 that if the correlations =<0.10 and N <300, the distribution of
the product of two correlations can be approximated as the Pearson Type IV distribution
(cf. footnote 3). Thus, in Figure 2, we only display two P-P plots that have medium
(0.30) or Jarge (0.50) correlations with the corresponding sample sizes (84 and 783, respec-
tively) (cf. Cohen and Cohen, 1983). From the P—P plots in Figure 2, we can see that the
approximated Pearson Type I distribution fit the simulated data very well. In addition,
Figure 2 shows that when the correlations are larger and N becomes bigger, the approximated
Pearson Type I distribution fit the simulated data considerably better.
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FIGURE 3 A P-P plot with Frank’s distribution for Pxe=Pyc=pPxpy="0.5 and N=783. (O =Approximated
Pearson Type I distribution; []= Frank’s distribution.)
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Figure 3 is a P—P plot comparing the approximated Pearson Type I distribution with
Frank’s approximation. By Frank’s (2000) approach, Fisher z%s, z(ry) and z(ry.), were
obtained from the simulated correlations, and then, the quantiles of the adjusted product
A7) X 2(ryc) were obtained from tables of Meeker et al. (1981) (see Frank, 2000, p.174
for the detailed steps). Figure 3 shows that the approximated Pearson Type 1 distribution
fits much better to the simulated data than does Frank’s distribution. In general, Frank’s
distribution is too conservative. For example, the quantile that corresponds to 95% percentile
for the approximated Pearson Type I distribution only corresponds to 50% percentile for
Frank’s distribution. Therefore, this figure provides evidence that the approximation pro-
cedures using the Pearson Type I distribution are more accurate than Frank’s approach for
approximating the distribution of the product of two dependent correlation coefficients.

5 REMAKES AND EXTENSIONS

The current study provided a much more accurate approximation to the distribution of the
product of two correlation coefficients with a closed form — Pearson Type I distribution
than Frank’s (cf. Fig. 3). A simulation study was conducted to assess the accuracy of the
approximation method in the present study. We also understand that the approximation is
comparatively not very favorable with respect to the third and the fourth moments. The pro-
blem may come from the lower-order approximation to the covariance of r,. and 7y, [cf. the
expression of 6., iIn Eq. 3 2)]. Thus, it would be valuable to find a better approximation to
the covariance of 7. and r,, through further study.

An alternative approach of dealing with the comparatively less accurate approximation for
the third and four moments would be to borrow the principle of regression analysis in which
we use predictors to explain as much variation in an outcome as possible through a linear
model. In this light, we can model the deviations of the simulated values from the approxi-
mated values of the moments as a function of Pxe, Pye» Pxy and N. We then can use the pre-
dicted value of the deviation, D, to correct the inaccuracy of the approximation to the
moments. The corrected or estimated value for the approximation value, denoted as
A=A+ D, is theoretically assumed to be more accurate than the approximated value, 4.
The virtue of this methodology is to utilize all the available information borne in the simula-
tion data across pPxe, Pye» Px» and N to correct the inaccuracy of the approximation. This
method applies because the range of parameters in the experimental design is restricted by
theory, constraining p’s according to what are defined as small, medium, and large effects.

Pan (2002) shows that the estimated values via the regression correction for the approxi-
mated Pearson Type I distribution fit much better to the simulated data than the original
values of the approximated Pearson Type I distribution. The improved results come from
the better estimation for the third and the fourth moments that regulate the tails of the dis-
tribution. Thus, the better results suggest that the regression approach would be a helpful
methodology to correct the inaccuracy of the approximated values.

As mentioned in the introduction section, the approximation can be used to conduct more
valid statistical inferences on measures of the impact of confounding variables than did Frank
(2000); and we can establish a standard measure of the robustness of a causal inference to
confounding variables. The approximation can also be used to assess indirect effects in
path or structural equation models. The current techniques (e.g., Sobel, 1982) of statistical
inferences about indirect effects have relied exclusively on asymptotic methods which
assume that the limiting distribution of the estimator is normal, with a standard error derived
from the delta method. However, the fact that the techniques are only large-sample approx-
imations has been cause for some concern (Allison, 1995; Bollen and Stine, 1990). As Bollen
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(1987) warned, “the accuracy of the delta method for small sample is not known_» B
the more accurate approximation described in the present study, we can obtain 5 be
mate for the indirect effects in path or structural equation models.

It would also be valuable to extend the simulation range for the correlation coefficients beyong
0.50. Although 0.50 is a large size for correlation coefficients in the social sciences (Cohen ar;d
Cohen, 1983), in the real world we often see correlation coefficients larger than 0.50. Thus, it
would be a valuable exploration to see if the conclusions of the current study still hold for c:)r-
relation coefficients larger than 0.50. That s, it is important to know whether the Pearson Type I
distribution still can be a reasonable approximate distribution for the product of two dependent
correlation coefficients when some population correlations are larger than 0.50.

Lastly, note that the approximation method in the present study is based on the assumption
that the three initial variables, X, ¥, and C, follow a trivariate normal distribution, It would be
valuable to find an approximation to the distribution of the product of two dependent correla-
tion coefficients for non-normal, categorical, or mixed initial variables, X, ¥, and C

Y Using
tter esti.
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APPENDIX A: MATHEMATICA CODE

The derivations of the central moments and the non-central moments were conducted by
Mathematica. See the following code and outputs for reference, where

pxc = p,,; bxc=b,,; s2xc= agc); s3xc = O'Sc); sdxc = agi);

pyc = p,; byc= by,; s2yc= agc); s3yc = agc); sdyc = 0'51) ;
DXY = Pyys  SXCYC = Opes ekl=FE [(Arxc)k(Aryc)l], k,1=0,1,2,3,0r4

muli = g, mui=p, i=1,23 o0r4

1n[1] : = el0 = bxc
e01 = byc
€20 = s2xc + bxe"2
e02 = s2yc + byc"2
e30 = s3xc — 3 s2xc+bxc — bxe3
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€03 = s3yc — 3 s2yc»byc — byc"3
€40 = sdxc — 4 s3xc » bxc + 6 s2xc * bxc"2 + bxc"4
€04 = sdyc — 4 s3yc~byc + 6 s2yc byc"2 + byc’4
ell = sxcyce + bxe < bye
€21 = s2xc » byc + 2 sxcyc » bxe + bxe”2 » bye
€12 = s2yc «bxe + 2 sxcyc +bye + bye2 » bxe
€31 = 3 s2xc ~sxcyc + 3 s2xc *bxe « bye + 3 sxcye »bxe 2 + bxe 3 « byc
€13 = 3 s2yc»sxcye + 3 s2yc bxe » bye + 3 sxcyc = bye” 2 + bye”3 » bxe
€22 = s2xc *s2yc + 2 sxeye” 2 + s2xc * bye" 2 + s2yc « bxe’ 2
+ 4 sxcyc » bxe * bye + bxe"2 * byc”2

In[15]:= mu0l =Expand [pxc - pyc+ pxe~ell + pye«el0 + ell]

Out [15] =bxc byc+ byc pxc+bxc pyc + pXC pyc -+ sxcye
In [16}:= mu02 = Expand[pxc"2 » pyc"2 + pxe’2 €02 + pyc’2 €20 + 22
+ 2pxc”2 * pyc« e01 + 2pxe * pyc”2 « 10 + 2pyc~e21 + 2pxc < e12
+ 4pxc * pyc« ell]
Out [16] =bxc? byc?+2 bxc byc? pxc + byc? pxc?+2 bxc? byc pyc + 4 bxc byc pXe pyc
+ 2 byc pxc? pyc + bxc? pyc? + 2 bxc pxc pyc? + pxc? pyc? + byc? s2xc
+ 2 byc pyc s2xc + pyc? s2xc + bxc? s2yc + 2 bxc pxc s2yc + pxc? s2yc
+ s2xc s2yc + 4 bxc byc sxcyc + 4 byc pxc sxcye + 4 bxc pyc sxcyc
+ 4 pxc pyc sxcye + 2 sxcyc?

In [17] := mu03 = Expand[pxc"3 « pyc"3 + pxc”3 = e03 + pyc’3 «e30
+ 3 pxc”3 xpye”2 xe01+3 pxe”3 » pyc = e02 + 3 pxe’2 + pyc"3 «el0
+ 3 pxc»pye3 +e20 + 3 pxc"2 »el3 + 3 pyc* 2+ e31
+9 pxc”2 «pyc 2 xell + 9 pxc"2 +pyc«el2 + 9 pxe » pyc”2«e2l
+ 9 pxc * pyc ~ e22]

Out [17] =3 bxc byc® pxc? — byc® pxc® + 9 bxc? byc? pxc pyc + 9 bxc bye? pxc® pyc
+ 3 byc? pxc? pyc + 3 bxc® byc pyc? + 9 bxc? byc pxc pyc?
+ 9 bxc byc pxc? pyc? + 3 byc pxc® pyc? — bxc? pyc? + 3 bxc? pxc pyc’
+ 3 bxc pxc? pyc®+ pxc® pyc+9 byc? pxc pyc s2xc + 9 bxc byc pyc? s2xc
+ 9 byc pxc pyc? s2xc — 3 bxc pyc® s2xc + 3 pxc pyc® s2xc
+ 9 bxc byc pxc? s2yc — 3 byc pxc? s2yc + 9 bxc? pXc pyc s2yc
+ 9 bxc pxc? pyc s2yc + 3 pxc® pyc s2yc + 9 pXc pyc s2xc s2yc
+ pyc® s3xc + pxc® s3yc+ 9 byc? pxc? sxcye + 36 bxc byc pxc pyc sxcyc
+ 18 byc pxc? pyc sxcyc + 9 bxc? pyc? sxcyc + 18 bxe pxc pyc? sxcyc
+ 9 pxc? pyc? sxcye + 9 pyc? s2xc sxcye + 9 pxc? s2yc SXcyc
+ 18 pxc pyc sxcyc?
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In [18] : = muf4 = Expand[pxc4  pyc 4 + pxc"4 04 + pyc” 4« e40 + 4 pxc™4
~pyc”3 ~e01 + 4 pxc’3 « pyc4  e10 + 4 pxc” 4« pyc = €03 + 4 pxe
«pyc 4 » €30 + 6 pxc”4 « pyc2 x 02 + 6 pxc"2 + pyc’4 «e20
+ 16 pxe” 3 * pye’3 » el1 + 16 pxc”3 « pyc = e13 + 16 pxc pye"3 ~e31
+ 24 pxc”3 « pye’2 xel2 + 24 pxc"2 xpyc3 « €21 + 36 pxc’2 = pyc’2 ~e22]

out [18] = byc* pxct+16 bxc byc® pxc® pyc—4 byc? pxc* pyc+36 bxc? byc? pxc? pyc?
+ 24 bxc byc? pxc’ pyc? +6 byc? pxc? pyc* + 16 bxc® byc pxc pyc?
+ 24 bxc? byc pxc? pyc® + 16 bxc byc pxc? pyc® + 4 byc pxc* pyc?
+ bxc* pyct — 4 bxc® pxc pyc* + 6 bxc? pxc? pyct +4 bxe pxc® pyc?
+ pxe* pyct +36 byc? pxc? pyc? s2xc + 48 bxc byc pxc pyc® s2xc
+ 24 byc pxc? pyc® s2xc + 6 bxc? pyc* s2xc — 12 bxe pxc pyc* s2xc
+ 6 pxc? pyc* s2xc + 6 byc? pxc? s2yc + 48 bxc byc pxc® pyc s2yc
— 12 byc pxc* pyc s2yc + 36 bxc? pxc? pyc® s2yc + 24 bxc pxc® pyc? s2yc
+ 6 pxc? pyc? s2yc + 36 pxc? pyc* s2xc s2yc — 4 bxc pyc* s3xc
+ 4 pxc pyc4 s3xc — 4 byc pxc4 s3yc+4 pxc4 pyc s3yc + pyc? sdxc
+ pxc? sdyc + 48 byc? pxc® pyc sxcyc + 144 bxc byc pxc? pyc? sxcyce
+ 48 byc pxc? pyc? sxcyc+48 bxc? pxc pyc® sxcyc+48 bxc pxc? pyc? sxcyc
+ 16pxc? pyc® sxcyc + 48 pxc pyc® s2xc sxcyc + 48 pxc® pyc s2yc sxcyc
+ 72 pxc? pyc? sxcyc?

In [19] ;= FullSimplify|[mu01]
out [19] = (bxc+ pxc) (byc + pyc) +sxcyc
In [20] ;= FullSimplify[mu02]

out [20] = ((bxc 4 pxc)® + s2xc) ((byc + pyc)? + s2yc) + 4(bxc + pxc) (byc + pyc) sxcyc
+2 sxcyc?

In[21]:= FullSimplify[mu03]

Out [21] = — byc’ pxc® 4 bxc?(3 byc — pyc) pye? + pxc® pyc® + 3 pxc pyc® s2xc
+ 3 pxc® pyc s2yc + 9 pxc pyc s2xc s2yc + pyc3 s3xc + pxc’ s3yc
+9 (pyc? s2xc + pxc?(pyc? + s2yc)) sxcyc + 18 pxc pyc sxcyc?
+ 3 byc? pxc (pxc? pyc + 3 pyc s2xc + 3 pxc sxcyc)
+ 3 bxc? pyc (pxc (3 byc? + 3 byc pyc + pyc? + 3 s2yc) + 3 pyc sxcyc)
+ 3 byc pxc (3 pyc? s2xc + pxc(pyc® — s2yc) + 6 pxc pyc SXCyc)
+ 3 bxe (byc® pxc?+ 3 byc? pxc? pyc+ 3 byc (pyc® s2xc + pxcz(pycz—l— s2yc)
+ 4 pxc pyc sxcyc) + pyc (— pyc® s2xc + pxc? (pyc® + 3 s2yc)
+ 6 pxc pyc sxcyc))
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In [22] := FullSimplify[mu04]

out[22] = byc* pxc* + 4 byc*(4 bxc — pxc) pxc® pyc + bxc? pyc — 4 bxc® pxe pyc?
+pxc? pyc* + 6 pxc? pyc* s2xc + 6 pxc? pyc? s2yc + 36 pxc? pyc? $2XC 82yc
+ 4 pxc pyc? s3xc + 4 pxc? pyc s3yc + pyc?* sdxc + pxc? sdyc
+ 16 pxc pyc (3 pyc? s2xc + pxci(pyc? + 3 s2yc)) sxcyc + 72 pxc? pyc? sxcyc?
+ 6 byc? pxc?(6 bxc? pyc®+ 4 bxc pxc pyc® + 6 pyc® s2xc + pxc?(pyc?+ s2yc)
+ 8 pxc pyc sxcyc + 6 bxc? pyc 2(pyc? s2xc + pxc*(pyc® + 6 s2yc)
+ 8 pxc pyc sxcyc) + 4 bxe pyc?(—3 pxc pyc? s2xc + pxc’(pyc? + 6 $2yc)
— pyc? s3xc + 12 pxc? pyc sxcyc) + 4 byc pxc(4 bxc? pyc® + 6 bxc? pxc pyc3
+ 4 bxc pycBpyc? s2xc + pxc?(pyc?® + 3 s2yc) + 9 pxc pyc sxcyc)
+ pxc(6 s2xc + pxc’(pye® — 3pye s2yc — s3yc) + 12 pxe pyc? sxcyc))

In[23]:= mu2 = Expand[mu02 — mu01"2]

out [23] =byc? s2xc + 2 byc pyc s2xc + pyc? s2xc + bxc? s2yc + 2 bxc pxc s2yc
+ pxc? s2yc + s2xc s2yc + 2 bxc byc sxcyc + 2 byc pxc sxcyc
+ 2 bxc pyc sxcyc + 2 pxc pyc sxcyc + sxcyc?

In[24]:= mu3 =Expand[mu03 — 3 mu01 « mul2 + 2 muf1”3]

Out [24] = — bxc? byc® — 3 bxc? byc® pxc —2 byc?® pxc® — 3 bxc? byc? pye — 2 bxc? pyc®
— 3 bxc byc?® s2xc — 3 byc? pxc s2xc — 9 bxc byc? pyc s2xc — 6 bxc pyc® s2xc
— 3 bxc® byc s2yc — 9 bxc? byc pxc s2yc — 6 byc pxc® s2yc — 3 bxc? pyc s2yc
— 3 bxc byc s2xc s2yc — 3 byc pxc s2xc s2yc — 3 bxc pyc s2xc s2yc
+ 6 pxc pyc s2xc s2yc + pyc® s3xc + pxc’ s3yc—9 bxcz byc? SXCycC
— 18 bxc byc? pxc sxcyc — 18 bxc? byc pyc sxcyc — 3 byc? s2xc SXCyC
— 6 byc pyc s2xc sxcyc + 6 pyc? s2xc sxcye — 3 bxc? s2yc sxcyc
— 6 bxc pxc s2yc sxcyc + 6 pxc? s2yc SXCyc — 3 s2x¢ s2yc sxcyc
~ 12 bxc byc sxcyc? — 12 byc pxc sxcyc? — 12 bxe pyc sxcyc?
+ 6 pxc pyc sxcyc? — 4 sxeyc’

In [25]:= mu4 = Expand[mu04 — 4 mu01 » mu03 + 6 mud1”2 » mud2 — 3 mu01"4]
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out [25]=3 bxc! byt +12 bxc® byc* pxc+6 bxc? byc? pxc? 44 bxc byc? pxc?
+ 8 byc* pxct +12 bxc* byc?® pyc+ 12 bxc? bye® pxc pye
— 12 bxc? byc® pxc® pyc+ 8 bxc bye® pxc® pyc +6 bxc* byc? pyc?
— 12 bxc® bye? pxc pyc” +4 bxc? byc pyc® + 8 bxc® byc pxe pyc?
+8 bxc* pyc* + 6 bxc? byc* s2xc + 12 bxe byc* pxc s2xc + 6 byc* pxc? s2xc
+24 bxc? byc® pyc s2xc + 12 bxce byc® pxc pyc s2xc — 12 byc® pxc? pyc s2xc
— 36 bxc byc? pxc pyc? s2xc + 24 bxc byc pxc pyc’ s2xc+24 bxc? pyc? s2xc
+ 6 bxc* byc? s2yc+24 bxc? byc? pxc s2yc+24 byc? pxc* s2yc
+ 12 bxc* byc pyc s2yc+12 bxe® byc pxc pyc s2yc—36 bxc? byc pxc® pyc s2yc
+ 24 bxe byc pxc® pyc s2yc+ 6 bxc* pyc? s2yc— 12 bxc® pxc pyc? s2yc
+ 6 bxc? byc? s2xc s2yc + 12 bxc byc? pxc s2xc s2yc+6 byc? pxc? s2xc s2yc
+ 12 bxc? bye pyc s2xc s2yc — 12 bxc byc pxc pyc s2xc s2yc
— 24 byc pxc® pyc s2x¢ s2yc +6 bxc? pyc? s2xc s2yc—24 bxc pxc pyc? s2xc s2yc
+ 6 pxc? pyc? s2xc s2yc — 4 bxc byc pyc?® s3xc — 4 byc pxc pyc® s3xc
— 8 bxe pyc? s3xc — 4 bxc byc pxc?® s3yc — 8 byc pxc*s3yc — 4 bxe pxc® pye s3yc
+ pyct sdxc+ pxc* sdyc+24 bxc?® byc® sxcyc+72 bxc? byc® pxc sxcyc
+24 bxe byc® pxc? sxcyc —8 byc® pxc® sxcyc +72 bxc® byc? pyc sxcyc
+ 36 bxc? byc? pxc pyc sxcyc — 72 bxc byc? pxc? pyc sxcyc
+24 bxc? byc pyc? sxcyc — 72 bxc? byc pxc pyc? sxcyc — 8 bxe® pye? sxcyce
+ 12 bxc bye® s2xc sxcye +12 byc?® pxc s2xc sxcyc +36 bxc byc? pyc s2xc sxcyc
— 36 bxc byc pyc? s2xc sxcyc — 36 byc pxc pyc? s2xc sxcyc
— 12 bxc pye’ s2xc sxcyc + 12 pxc pyc® s2xc sxeyc + 12 bxc® byc s2yc sxcyc
+ 36 bxc? byc pxc s2yc sxcyc — 36 bxc byc pxc® s2yc sxcyc
—12byc pxc3 s2yc sxcyc+12 bxc® pyc s2yc sxcyc —36 bxe pxc2 pyc s2yc sxcyc
+ 12 pxc® pyc s2yc sxeyc + 12 bxc byc s2xc s2yc sxeye
+ 12 byc pxc s2xc s2yc sxcyc + 12 bxe pyc s2xc s2yc sxcyc
— 24 pxc pyc s2xc s2yc sxcyc —4 pyc® s3xc sxcyc —4 pxc?® s3yc sxcyc
+ 48 bxc? byc? sxcyc? + 96 bxe byc? pxc sxcye? + 12 byc? pxc? sxcyc?
+ 96 bxc? byc pyc sxcyc? — 24 bxc byc pxc pyc sxcyc? — 48 byc pxcpyc sxcyc?
+ 12 bxc? pyc? sxcyc? — 48 bxc pxc pyc? sxeyc? + 12 pxc? pyc? sxcyc?
+ 6 byc? s2xc sxcyc” + 12 byc pyc s2xc sxcyc? —30 pyc2 s2xc sxcyc?
+ 6 bxc? s2yc sxcyc? + 12 bxe pxc s2yc sxcyc? —30 pxc? s2yc¢ sxcyc?
+ 6 s2xc s2yc sxcyc® + 36 bxc byc sxcyc® + 36 byc pxc sxcyc?
+ 36 bxc pyc sxcyc® — 36 pxc pyc sxcyc® +9 sxcyc?

In [26]:= FullSimplify[mu2]
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Out [26] =(bxc + pxc)? s2yc + s2xc ((byc + pyc)® + s2yc)

+ 2(bxc + pxc) (byc + pyc) sxcyc + sxeyc?

In [27]:= FullSimplify[mu3]

Out [27] = — 2 byc® pxc® —3 bye?® pxe s2xc — 6 byc pxc? s2yc — 3 byc pxc s2x¢ $2yc

+ 6 pxc pyc s2xc s2yc — bxc® (byc + 3 byc? pyc +2 pyc®+3 (byc + Py©) s2yc)
+ pyc? s3xc + pxc® s3yc —3 (—2 pxc? s2yc+ s2xc (byc? +2 bye pyc
—2pyc? + s2yc)) sxcyc — 6 pxc (2 byc — pyc) sxcyc? — 4 sxcyc’

— 3 bxc?(byc pxc (byc? + 3 s2yc) + (3 byc (byc + 2 pyc) + s2yc) sxcyc)

+ 3 bxc (—s2xc (byc® + 3 byc? pyc+ 2 pyc® + (byc + pyc) s2yc)

— 2 pxc (3 byc? + s2yc) sxcyc ~4 (byc+ pyc) sxcyc?)

In [28]:= FullSimplify[mu4]

out [28] =byc* (8 pxc? + 6 pxc? s2xc + 6 pxc? pyc? s2xc s2yc +bxc* (3 byct
p p y

+12 byc® pyc+6 byc? pyc? + 4 byc pyc® +8 pyct +6 (byc + pyc)? s2yc)
+pyc? sdxc + pxc* sdyc+ 4 (3 pxc pyc s2xc (pyc® —2 s2yc) — pyc® s3xc
+ pxc® (3 pye s2yc — s3yc)) sxcyc + 6 (pxcX(2 pyc? — 5 s2yc)

+ s2xc (=5 pyc? + s2yc)) sxcyc? — 36 pxc pye sxcyc® +9 sxcyc?

—4byc® pxe (3 pXc pyc s2xc + 2 pxc? sxcyc — 3 $2xc sxcyc)

+4 bxc’(pxe (3 byc* +3 byc® pyc — 3 bye? (pyc? —2 s2yc) — 3 pyc? s2yc
+byc (2 pyc® + 3 pyc s2yc)) + (6 byc® + 18 byc? pyc —2 pyc® +3 pyc s2yc
+ 3 byc (2 pyc? + s2yc)) sxcyc) + 6 byc? (pxc?(4 pxc? + s2xc) s2yc + (2 pxc?
+ 52xc) sxcyc?) + 6 bxc? (byc* pxc® —2 byc? pxc? pyc + byc* s2xc

+4 byc® pyc s2xc + 4 pyc? s2xc — 6 byc pxc? pyc s2yc + byc? s2xc s2yc

+ 2 byc pyc s2xc s2yc + pyc? s2xc s2yc + 6 byc pxc (2 byc? + byc pyc

-2 pyc® + s2yc) sxcyc + (8 byc® + 16 byc pyc + 2 pyc? + s2yc) sxcyc?)

+ 4 bxc (byc* pxc® +2 byc?® pxc® pyc+ 3 byc* pxc s2xc + 3 byc?® pxc pye s2xc
— 9 byc? pxc pyc? s2xc + 6 byc pxc pyc® s2xc +6 byc pxc® pye s2yc

+ 3 byc? pxc s2xc s2yc — 3 byc pxc pyc s2xc s2yc — 6 pxc pyc? s2xc s2yc

— byc pyc® s3xc — 2 pyc* s3xc — byc pxc® s3yc — pxc® pyc s3yc

+3 (2 byc® pxc®> — 6 byc? pxc? pyc+ byc® s2xc +3 byc? pyc s2xc

— 3 byc pyc? s2xc — pyc® s2xc — (byc + pyc) (3 pxc? — s2xc) s2yc) sxcyc

+ 3 pxc (8 byc? — 2 byc pyc — 4 pyc? + s2yc) sxcyc® + 9 (byc + pyc) sxcyc’)
— 4 byc (2 pxc* s3yc + 3 pxc? s2yc sxcyc — 3 pyc s2xc sxcyc?

+ 6 pxc? pyc (s2xc s2yc + 2 sxcyc?) + pxc (pyc® s3xc+9 pyc? s2xc sxcyc

— 3 s2xc s2yc sxcyc — 9 sxcyc?))

Converted by Mathematica May 2, 2002
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APPENDIX B: SPSS CODE

Below is the SPSS code for calculating the approximate moments for N=28 or M=
N+ 6 =34 as an example, where

bxc = b,,; $2xc0 = ch); $3xc0 =0 533 ; s4xcl = ch) ;
byc =b,,; s2ycO = aﬁi); s3yc0 = agc); sdyc0 = afy?;

pxc = p;  s2xc = E[(Aref);  s3xc = E[(Ary)’);  séxe = E[(Arx)'];
pyc = py; S2yc=E [(Arye)*);  s3ye = E[(Ary)’];  sdye = E[(Ar: 50)";
PXY = Py SXCYCO =07, p,; SXCYC = E(Arselrye);

ekl = E[(Arye) (Arye)'], k, 1=1,2,3,0r4; mi=p, mui=y, i=123o0r4.

The SPSS program for calculating approximate moments using SPSS data PCM.sav.
(PCM = Population correlation matrix)

GET
FILE ='C:\My Documents\ Academics\Simulation\PCM.sav".
EXECUTE .

****N:zg * ok ok ok,

COMPUTE bxc = (— pxc+ (1 —pxcx *2)/(2+34)) = (1 +9*(3 4+ pxc* «2)/(4%34)
+3%(121 + 70 *pxcx «2 + 25 xpxcx x4)/(8+34x »2)
+ 3% (6479 + 4923 spxc* x2 + 2925 »pxc+ +4 + 1225 pxc * *6)/(64 34+ x3)
+ 3 (86341 4 77260 xpxc » 2 + 58270 xpxc * x4 + 38220 « pxc *6

+ 19845 «pxc+ = 8)/(128 x 34« x 4)).
EXECUTE .

COMPUTE byc = (— pyc*(1 —pyc* *2)/(2*34))«(1 + 9+ (3 +pyc+ *2)/(4+34)
+3%(121 + 70 xpyc x2 + 25 xpycx x4)/(8 34 x x2)
+ 3% (6479 + 4923 xpyc* 2 + 2925 xpyc x4 + 1225 »pyc *6)/(64 %34+ +3)
+ 3 (86341 + 77260 *pyc* 2 + 58270 xpyc « x4 + 38220 » pyc *6

+ 19845 xpyc+ x 8)/(128 34+ x4)).
EXECUTE .

COMPUTE s2x¢0 = ((1 — pxc +2) « x2/34)» (1 + (14 + 11 »pxc x *2)/(2 +34)
4 (98 4 130 +pxe* 2 4 TS5 xpxex *4)/(2 %34 »2) + (2744 -+ 4645 » pxox «2
4422 « pxC * *4 + 2565 » pxC * *6)/(8 %34+ 3) + (19208 + 37165+ pxe» *2

+ 44499 » pxc+ *4 + 40299 xpxc * * 6 + 26685 * pxc* * 8)/(8x34+ «4)).
EXECUTE .

COMPUTE s2yc0 = ((1 — pyc* #2)* x2/34)x (1 + (14 + 11 +pyc* x2)/(2+34)
4 (98 + 130 *pyc* 2 + 75xpycx »4)/(2+34x 2) + (2744 + 4645 »pyc* x2
+ 4422 xpyc* *4 + 2565 xpyc* * 6)/(8 x 34 »3) + (19208 + 37165 »pyc* »2

+ 44499 « pyc +4 + 40299 + pyc6 + 26685 «pyc * *8)/(8 34+ x4)).
EXECUTE .



442 WEI PAN AND K. A. FRANK

COMPUTE s3x¢c0 = (— pxc*(1 — pxc* *2)* %3/(34 % »2))« (6 + (69 + 88 * pxc %2)/34
+3%(797 + 1691 xpxc* »2 + 1560 » pxc * *4)/(4 » 34 » *2) +3(12325
+ 33147 » pxc * =2 + 48099 » pxc * *4 + 44109 xpxc * + 6)/(8 » 34 « *3)).

EXECUTE .

COMPUTE s3yc0 = (— pyc«(1 — pyc* *2)x «3/(34 « *2))* (6 + (69 + 88 * pyc *2)/34
+3%(797 + 1691 *pyc » 2 + 1560 = pyc * x4)/(4%34x +2) + 3% (12325
+ 33147 xpycx 2 + 48099 * pyc * *4 + 44109 «pyc* +6)/(8 x34 « «3)).

EXECUTE .

COMPUTE s4xc0 = (3 (1 —pxc* *2) » »4/(34 *2))+ (14 (12 + 35+ pxc * *2)/34
+ (436 + 2028 x pxc « x2 + 3025+ pxc * «4)/(4+34 « *2) + (3552
+ 20009 *pxc * »2 + 46462 * pxc * «4 + 59751 *pXC* %6)/(4 %34 x x3)).
EXECUTE .

COMPUTE sdyc0 = (3 (1 — pyc* *2)* »4/(34 x *2))*(1+ (12 + 35« pyc« «2)/34
+ (436 + 2028 « pyc +2 + 3025 * pyc * «4) /(4«34 « *2) + (3552
+ 20009 » pyc * *2 + 46462 « pyc * x4 + 59751 *pyc x6)/(4 %34 = «3)),
EXECUTE .

COMPUTE sxcyc0 = (pxy * (1 — pxc* #2 — pyc* x2)
—PpxXc#pyc* (1 — pxc* *2 — pyc* »2 — pxy * x2)/2)/34.
EXECUTE .

COMPUTE s2xc=s2xc0 +bxc * *2.
EXECUTE .

COMPUTE s2yc = s2yc0 + byc = = 2.
EXECUTE .

COMPUTE s3xc =53xc0 — 3 » s2xc0™bxc — bxc+ 3.
EXECUTE .

COMPUTE s3yc =s3yc0 — 3 s2yc0 *byc — byc* 3.
EXECUTE .

COMPUTE sdxc = s4xc0 — 4 »53xc0 » * bxc + 6 » s2xc0 + bxc » »2 + bxc 4.
EXECUTE .

COMPUTE s4yc = sdyc0 — 4 xs3yc0 *byc+ 6 *52yc0 «byc+ 2 +byc« =4,
EXECUTE .

COMPUTE sxcyc = sxcyc0 + bxc # byc.
EXECUTE .

COMPUTE e21 =bxc * *2 = byc + s2xc0 * byc + 2 = sxcyc0 = bxc.
EXECUTE .

COMPUTE e12 =byc » 2 *bxc + s2yc0  bxc + 2 sxcyc0 » byc.
EXECUTE .
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COMPUTE e31 =3 *52x¢c0 » sxcyc0 + bxc » * 3 »byc + 3 » s2xc0 « bxc « byc
~+ 3 xsxcycO «bxc* * 2.
EXECUTE .

COMPUTE el3 =3 »s2yc0 » sxcyc0 + byc * * 3 »bxc + 3 »s2yc0 « byc » bxc
+ 3 »sxcycOxbyc* =2,
EXECUTE .
COMPUTE 22 = s2xc0 *s2yc0 + 2 sxcyc0 * x2 4+ bxc » » 2 xbycx 2 + s2xc0 byc 2

+ s2yc0 *bxc  * 2 + 4 » sxcyc  bxe » byc.
EXECUTE .

COMPUTE m1 = pxc*pyc + pxc*byc + pyc*bxe + sxcye.
EXECUTE .
COMPUTE m2 = pxc* *2*pyc *2 + pXc» 2% 52yc + pyc* 2 «s2xc + €22
4+ 2 *pxc* *2 xpyc*byc + 2 *pxcxpycx *2xbxc + 2 «pycxe2l + 2xpxcxel2
+ 4« pxc * pyc * SXCyc.
EXECUTE .
COMPUTE m3 = pxc+ *3 *pyc* 3 4+ pxc+* »3 +83yc + pyc »3 *s3XcC
+ 3 xpxcx x3*xpycx x2xbyc + 3+pxc* «3 xpycrs2yc
+ 3 xpxcx »2+pyc* *3 *»bxc + 3 #pxc*pycx *3 xs2xC
+3xpxcx x2+el3 +3+pycx x2xe31 + 9 xpxcx »2»pyc* »2*sXCyc
+ 9xpxc+ *2xpyc*el2 + 9xpxcrpyc *2xe2l + 9 xpxexpyc*e22.
EXECUTE .
COMPUTE m4 = pxc+ *4xpyc* x4 + pxc+ 4 +s4yc + pyc* »4 »s4xc
+ 4 xpxc* x4 xpycx «3xbyc + 4 *pxc* *3*pyc+ »4xbXC 4 4% pxXC* »4 = pyc*s3yc
+ 4 xpxc*pyc+ » 4x83XCH6*pXC* x4 *pyC * 2 S2yC+6 * pXC * *2xpyc* x4 xs2xc
+ 16 xpxc* »3xpyc+ *3 »sxcyc + 16 »pxc » *3xpyc=el3
+ 16 *pxcxpyc »3xe31 + 24 xpxc» »3xpycx x2xel2

+ 24 xpxc* *2xpyc x3xe2l + 36 xpxcx x2xpyc «2xe22.
EXECUTE .

COMPUTE mu2=m2 — ml » 2.
EXECUTE .

COMPUTE mu3 =m3 — 3»ml+m2+2+ml * +3.
EXECUTE .

COMPUTE mu4 =md—4+ml+*m3 +6*ml* x2+m2 — 3»ml+ «4,
EXECUTE .

SAVE OUTFILE="'C:\My Documents\Academics\Simulation\PCM and Approximated'
+'Moments (N = 28).sav'

/keep = pxc pyc pxy ml mu2 mu3 mu4

/COMPRESSED .



