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Causal inference is an important, controversial topic in the social sciences, where
it is difficult to conduct experiments or measure and control for all confounding
variables. To address this concern, the present study presents a probability index
to assess the robustness of a causal inference to the impact of a confounding vari-
able. The information from existing covariates is used to develop a reference dis-
tribution for gauging the likelihood of observing a given value of the impact of a
confounding variable. Applications are illustrated with an empirical example per-
taining to educational attainment. The methodology discussed in this study allows
for multiple partial causes in the complex social phenomena that we study, and
informs the controversy about causal inference that arises from the use of statis-
tical models in the social sciences.
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Causal inference is an important, controversial issue in most fields of the social
sciences, such as educational research, behavioral research, psychometrics, econo-
metrics, and sociology as well as epidemiology and biostatistics. In those fields,
researchers routinely draw conclusions about causal relationships between depen-
dent variables and independent variables from statistical models using data from
observational studies (see Jacobs, Finken, Griffin, & Wright, 1998; Lee, 1999;
Okagaki & Frensch, 1998; Portes, 1999, for examples). However, the usual sta-
tistical approaches may not lead to valid causal inferences, even if the models are
supported by related theories (Abbott, 1998; Cook & Campbell, 1979; Holland,
1986, 1988; McKim & Turner, 1997; Pearl, 2000; Rubin, 1974; Sobel, 1996, 1998;
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Winship & Morgan, 1999). The problem mainly comes from the failure to control
for the potentially inexhaustible list of all potentially confounding variables.

For instance, Okagaki and Frensch (1998) examined the relationship between
parenting style and children’s school performance for different ethnic groups, but
did not control for the children’s age, gender, or socioeconomic status. Jacobs,
Finken, Griffin, and Wright (1998) examined the relationships between parent atti-
tudes, intrinsic values of science, peer support, available activities, and preference
for future science career for science-talented, rural, adolescent females. However,
they also failed to control for some demographics, such as age and socioeconomic
status. In a third example, Lee (1999) examined the differences in children’s views
of the world after they personally experienced a natural disaster for various ethnic,
socioeconomic status, and gender groups, but failed to control for pre-world-views.
In still another example, Portes (1999) examined the influence of various factors
on immigrant students’ school achievement and controlled for many demographic
and sociopsychological covariates. Nevertheless, we still can ask: “Did he control
for all possible sociopsychological factors?” Therefore, the conclusions in each
case might not support causal relationships, although the relationships are statisti-
cally significant.

To deal with this problem, the literature offers the following solutions:

1. Abandon the use of causal language and emphasize the effects of causes
rather than the causes of effects (Holland, 1986, 1988; Sobel, 1996, 1998);

2. Spend more effort on descriptive work (Abbott, 1998; Sobel, 1998);
3. Use alternative models, e.g. randomized and well-controlled nonrandomized

studies (Rubin, 1974);
4. Apply causal discovery algorithms which operate on statistical datasets to

produce directed causal graphs (Scheines, Spirites, Glymour, Meek, & Richardson,
1998; Spirites, Glymour, & Scheines, 1993);

5. Use instrumental variables to control for selection into treatment and control
(Angrist, Imbens, & Rubin, 1996; Bowden & Turkington, 1984);

6. Assess the robustness of a statistical inference to the impact of confounding
variables (Frank, 2000).

If we are still interested in exploring causal relationships in the real world,
Approaches 1 and 2 are not helpful. Approach 3, random assignment, is often
impractical in the social sciences given logical, ethical, and political concerns
(Rubin, 1974; Winship & Morgan, 1999). In addition, it is not always possible to
measure all confounding variables to be controlled for in statistical analyses. In
Approach 4, causal graphs are generated by calculations of conditional statistical
dependence or independence among pairs of variables. However, in most cases,
the assumptions under which the algorithms operate are not powerful enough to
uniquely identify the real causal structure underlining correlational data, rather
than some set of statistically equivalent but genuinely alternative representations
(Woodward, 1997). Thus, the soundness of the methodology of causal graphs is
uncertain. Though Approach 5 is theoretically strong, in practice, it is difficult to
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find an instrumental variable that is correlated with assignment to treatment level
but not the outcome (Heckman, 1997; Winship & Morgan, 1999).

Approach 6 applies an alternative paradigm. Inspired by the idea of express-
ing sensitivity of inferences rather than precisely establishing causality, Frank
(2000) quantified the impact of a confounding variable on the inference for a
regression coefficient. Define X as a predictor of interest, Y as an outcome, and
U as a confounding variable. Then, Frank characterized the impact of the con-
founding variable on the inference for the predictor of interest (including the
impact on the both estimated regression coefficient and its standard error) as the
product of two dependent correlations: k = rxu × ryu, where rxu is the correlation co-
efficient between X and U and ryu is the correlation coefficient between Y and U.1

Afterward, Frank derived a threshold at which the impact of a confounding vari-
able would alter the statistical inference about the predictor if the confounding
variable were controlled in the regression model. That is, the initial inference is
preserved if the impact of any potential confounding variable does not exceed the
corresponding impact threshold for a confounding variable (ITCV) of a given, sta-
tistically significant predictor.

Because the ITCV is expressed as the product of two correlations, its metric is
directly interpretable in terms of known trends in the social sciences (Cohen &
Cohen, 1983). For example, when the ITCV exceeds .25, the observed correlations
must be greater than .5, (assuming that the correlations are equal; cf. Frank, 2000,
Equation 18), considered a large effect in the social sciences to alter the original
inference. ITCV’s less than .01 suggests that the component correlations each be
less than .1, small effects, to alter the initial inference.

But though the ITCV has an interpretable metric, there is still doubt as to the
likelihood of observing a given impact value that exceeds the ITCV in a particular
application. For this scenario Frank (2000) drew on a reference distribution, draw-
ing on the observed impacts of existing covariates (defined by the product of two
correlations between the covariate and the predictor of interest and the covariate
and the outcome), as a basis for evaluating the likelihood of observing an impact
value as extreme as the ITCV.

Since the true distribution of the product of two correlations is unknown, Frank
(2000) suggested an approximation based on Fisher z transformations of the cor-
relations, and then applied Aroian and colleagues’ approximation to the product of
two normal variables (Aroian, 1947; Aroian, Taneja, & Cornwell, 1978; Cornwell,
Aroian, & Taneja, 1978; Meeker, Cornwell, & Aroian, 1981; Meeker & Escobar,
1994), to define the reference distribution of the impacts of existing covariates.
Unfortunately, this doubly asymptotic result is tenuous (see Pan, 2002, p. 60).
Thus, the purpose of this present study is to employ a more accurate approxima-
tion to the distribution of the product of two dependent correlation coefficients
based on Pan (2002) in extending Frank’s ITCV to a probability index and then
presenting the expression for the index using the more accurate theoretical refer-
ence distribution.2 We then illustrate the applications of the probability index with
an empirical example regarding the effect of father’s occupation on educational
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attainment (Featherman & Hauser, 1976). In the conclusion, we acknowledge chal-
lenges to the logic of the use of the reference distribution.

A Probability Index of the Robustness of a Causal Inference

Suppose we are interested in making a causal inference from the following linear
regression model:

with the corresponding null hypothesis regarding the coefficient βx:

We know that a t-value under the null hypothesis H0 is

where rxy is the sample correlation between X and Y and n is the sample size.
Concerns about a confounding variable suggest that there be a second model

that includes a potential confounding variable U:

Then, from Frank (2000), the t value under the null hypothesis H0 for βx with
respect to Equation 3 is

where rxu and ryu are the sample correlations between X and U and between Y and U,
respectively.

In order to know how robust the statistical inference about the predictor is to the
impact of the confounding variable, we want to know the likelihood that we will
retain the primary statistical inference that rejects H0, when U is in Equation 3. In
other words, for a particular study with an observed t value t0,3 which is larger than
the t-critical value tα at level α,4 we are particularly interested in the following
probability W:
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W is the likelihood that we will preserve the original inference that rejects the null
hypothesis H0, when the potential confounding variable is in Equation 3, given t0.
Thus, W is the probability of retaining a causal inference (PRCI) given inclusion
of a confounding variable. Note that the logic of Equation 5 assumes an inference
has already been made—that there is a value t0 that is larger than tα. That is, as with
sensitivity analysis, we are entering the inference process post-facto. But, the PRCI
focuses on the impact on the inference for the regression coefficient rather than on
the change in the size of the regression coefficient in sensitivity analysis (e.g., Lin,
Psaty, & Kronmal, 1998; Rosenbaum, 1986; see Frank, 2000, pp. 161–163, for a
review on the relationship to sensitivity analysis and size rule).

The relationship between the PRCI and sensitivity analysis can be also illus-
trated by plotting the t value, tu, versus the impact of the confounding variable,
k = rxu × ryu, as shown in Figure 1. The curve was plotted using Frank’s formula
(Frank, 2000, Equation 5, p. 154) for rxy = .30 and n = 84, the medium size of corre-
lation and the corresponding sample size (cf. Cohen, 1988). As shown in Figure 1,
when the impact k is larger than the ITCV, the inference for the regression coefficient
is altered by the impact of the confounding variable; when the impact k is smaller than
the ITCV, the inference for the regression coefficient is unaltered by the impact of
the confounding variable. Here, the PRCI is the probability of k smaller than ITCV.
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FIGURE 1. The relationship between the t value, tu, and the impact of the confounding
variable, k = rxu × ryu, for rxy = .30 and n = 84.
Note. Since k = rxu × ryu and since rxu, ryu and rxy are related, when rxy = .30, k must be smaller
than .65 (cf. Frank, 2000, Equation 5, p. 154).



To develop a computational expression for the PRCI, we employ Frank’s
(2000) definition of the impact of a confounding variable on the inference for a
regression coefficient: k = rxu × ryu. Maximizing the expression for tu (cf. Equation 4)
for a regression coefficient given the constraint k = rxu × ryu and setting tu = tα, the
t-critical value, given α and the degrees of freedom, Frank defined the impact
threshold for a confounding variable (ITCV) on the inference for a regression
coefficient as (cf. Frank, 2000, p.155):

where d = tα
2 + n − 3.

The ITCV indicates a maximum value for the impact of the confounding vari-
able U necessary to make the coefficient β̂x that is statistically significant in Equa-
tion 1 become just still statistically significant in Equation 3 (see Frank, 2000, for
more information). Thus, when tu > tα, the coefficient β̂x is significant in Equation
3, which implies that the impact of the confounding variable does not exceed the
ITCV. Therefore, the observed value of the PRCI can be obtained as follows in
terms of the ITCV:

where K is the impact of an unmeasured confounding variable with a distribution
f(k). Note that the conditional state of t0 in Equation 5 is implied by the ITCV
because the ITCV is a function of rxy (see Equation 6), which is in turn the (inverse)
function of t0 (see Equation 2).

Of course, we cannot always measure confounding variables and, therefore,
we cannot always obtain the distribution f (k). That is, there is apparently no
empirical basis for obtaining the probability distribution for the impact of an
unobserved confounding variable U. But Frank (2000) suggested that informa-
tion from impacts of observed covariates could be used to generate a reference
distribution for the impact of the unobserved confounding variable (see Frank,
2000, pp. 172–176, for more information on how to generate the reference dis-
tribution). The reference distribution is different from a sampling distribution
and we use the term reference distribution instead of sampling distribution to
indicate that the observed estimates are based on the impacts of covariates other
than the potentially confounding variable. That is, the impact of the unobserved
confounding variable can be characterized by the reference distribution, although
it is not actually drawn from the reference distribution. The goal is not to obtain
a confidence interval for an observed value of k and then test a null hypothesis,
but to evaluate the likelihood of observing k if it can be represented by the
impacts of existing covariates.
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Suppose we have m observed covariates Z1, . . . , Zm. Corresponding to Equa-
tions 1 and 3 we have

The impact of each covariate Zi is then kzi
= rxzi �z1 . . . zi−1 zi+1 . . . zm

× ryzi �z1 . . . zi−1 zi+1 . . . zm
(where the � indicates partialled for). The distribution f(k) can then be evaluated in
terms of the distribution of observed impacts kzi

, i = 1, . . . , m.
One could simply evaluate f (k) in terms of its order in the observed distribu-

tion. Unfortunately, if we have few covariates, then a simple location of f(k)
amidst the observed impacts may provide an imprecise evaluation of the likeli-
hood of observing a given impact as extreme as the ITCV. Frank (2000) proposed
using the mean values of the observed partial correlations as sufficient statistics
for an approximate distribution (cf. Note 2) against which f(k) could be evaluated
empirically. Therefore, the probability W in Equation 5 becomes:

where and , the mean

values of the partial correlations pertaining to the observed covariates. Then,
–rxz.�z and –ryz.�z are used for estimating the population values ρxu and ρyu, respec-
tively, based on the assumption that the impacts of existing covariates represent
the impact of the confounding variable. Thus, the computational expression for the
PRCI in Equation 7 is still operational, once we obtain the theoretical reference
distribution f (k) by estimating ρxu and ρyu from the two means –rxz.�z and –ryz.�z.

As previously noted, Frank’s (2000) theoretical reference distribution based on
Fisher z transformation was doubly asymptotic, compromising its accuracy. In
contrast, Pan (2002) derived a highly accurate approximation to the product of two
dependent correlation coefficients by obtaining the first four moments of the prod-
uct. Then, Pan applied those moments to the Pearson distribution family (Pearson,
1895), obtaining an approximate distribution of the product of two dependent cor-
relation coefficients as a Pearson Type I distribution (see Appendix A).5 Ulti-
mately, this yields a reference distribution generated from the measured covariates
for the impact of the unmeasured confounding variable. In the next section, we pre-
sent an application of the PRCI regarding educational attainment, applying Pan’s
result to generate the reference distribution to inform the causal inference.

An Illustration

As shown in Featherman and Hauser’s table (1976, Table 3, p. 469), they estimated
the effect of family background, e.g. father’s occupation, on educational attainment
as .051 with a standard error of .002. From this, Featherman and Hauser concluded
that father’s occupation had an effect on educational attainment. Recently, Sobel
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(1998) argued that both family background and educational attainment are affected
by father’s education which was not controlled for in the analysis. That is, father’s
education is a potential confounding variable for the causal relationship between
father’s occupation and educational attainment (see Figure 2 for an illustration).

Sobel’s critique is represented in Figure 2. Begin with the standard representa-
tion of the relationship between X and Y, referred to as β̂x, associated with the arrow
at the top of the figure. Then introduce the concern for the confounding variable in
terms of the relationships associated with the confounding variable, rxu and ryu. The
impact is then expressed in terms of the arrows emerging from rxu and ryu and con-
verging to represent the product rxu × ryu which then impacts on β̂x. Frank (2000)
obtained an ITCV of .228 for father’s occupation, indicating that the component
correlations (partialled for other covariates) would have to be greater than .477 to
alter the inference.

The values of .477 are on the order of large correlations by social science terms
(Cohen & Cohen, 1983), but are they likely to be observed in this type of situation?
To address this question we use the distribution of the impacts of observed covari-
ates reported in Featherman and Hauser’s Table 3 supplemented by covariates
listed in correlation matrices reported by Duncan, Featherman and Duncan (1972)
for relationships observed in various samples and data sets. Covariates included
number of siblings, importance of getting ahead, brother’s education, and father in
farming. Data sets included the Duncan OCG study and the Family Growth in Met-
ropolitan America study. An empirical distribution of the estimated impacts of the
14 covariates is shown in Figure 3.

To approximate the theoretical reference distribution, we first need to estimate
the coefficients of skewness and kurtosis of the reference distribution. We could
estimate the coefficients for the reference distribution directly from the sample
moments of the product kzi

= rxzi�z1 . . . zi−1 zi+1 . . . zm
× ryzi�z1 . . . zi−1 zi+1 . . . zm

. But, we only
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FIGURE 2. Father’s education as a potential confounding variable for the causal rela-
tionship between father’s occupation and educational attainment.



have 14 covariates and the sampling error for the sample moments would be large.
Thus, we will estimate the coefficients of skewness and kurtosis for the reference
distribution from Pan’s (2002) formulae (5), (12), (12′), (12″), and (13).

First, we have the estimated population correlations ρxu, ρyu, and ρxy as follows:

Substituting those estimated population values into Pan’s formulae (5), (12), (12′),
(12″), and (13) gives us the estimated values of the coefficients of skewness and
kurtosis as b1 = .0073 and b2 = 2.995, respectively. Also, from Equation 14 in Pan,
we obtain κ̂ = −.1726 < 0, verifying that the reference distribution can be approxi-
mated by a Pearson Type I distribution (cf. Elderton & Johnson, 1969, p. 49). Then,
following the formulae in Appendix A (cf. Pan, 2002, p. 26–27), we obtain the esti-
mated distribution function f (k) for k = rxu × ryu as follows with the graphical pre-
sentation in Figure 4:
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In contrast to the discrete representation in Figure 3, Figure 4 shows a theoreti-
cally continuous function defined by estimates of four moments. Of course, one
could use the empirical distribution to make inferences about ITCV. For exam-
ple, one could compare ITCV to the largest value in the empirical distribution, or
to the combined impact of several covariates, or to the overall impact. The advan-
tage of the theoretical distribution is that it combines information across the
empirical values to generate a continuous representation. This is especially criti-
cal for describing the tails of the distribution for which there is little information
in the discrete representation, and yet we suspect the tails extend beyond the dis-
crete cutoffs of .025 and .175, as is shown in Figure 4.

Given the ITCV for father’s occupation as .228 (Frank, 2000), we obtain6 the

PRCI = via a numerical integration using Math-

ematica (Wolfram Research Inc., 2000; see Appendix B for the Mathematica
code). To the extent that the impact of father’s education is represented by the
impacts of the covariates, we could then conclude that the inference regarding
father’s occupation on educational attainment is very robust to confounding vari-
ables similar to those already included in the model. In other words, it is very
unlikely that the impact of another confounding variable, such as father’s educa-
tion, will alter our inference about father’s occupation, if the impact is similar to
the impacts of covariates already in the model.

Use of the PRCI through the ITCV informs the statistical inference and the cor-
responding debate regarding the inference of an effect of father’s occupation on
educational attainment. First, the original metric of the ITCV indicates that the cor-
relations associated with any confounding variable would each have to be large by
social science terms such that, if included, the confounding variable would alter
the original statistical inference regarding father’s occupation. But the PRCI helps
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us appreciate the likelihood of observing an impact as extreme as the ITCV if the
impacts of existing covariates can be considered representative of the impact of
unobserved confounding variables. In this case, the likelihood of observing an
impact as extreme as the ITCV is very small, and the PRCI is very large. There-
fore the inference that father’s occupation causes educational attainment is likely
to be robust with respect to the impact of a confounding variable. That is, we may
still acknowledge that there may be other factors confounded with father’s occu-
pation, but it is unlikely that these factors will completely alter the original statis-
tical and causal inferences. Ultimately though we recognize that factors such as
father’s education may be confounded with father’s occupation (Sobel, 1998), we
accept Featherman and Hauser’s interpretation of father’s occupation as a cause of
educational attainment.

As it happens, the impact of father’s education can be partially assessed in terms
of data in Duncan et al.’s correlation table (1972, Table A.1, p. 263). In these data,
the correlation between educational attainment and father’s education (ryu) was
estimated to be .418 and the correlation between father’s occupation and father’s
education (rxu) was estimated to be .494. The unadjusted impact is .206, and simi-
lar unadjusted impacts based on the Appendix in Sewell et al. (1980) are .156 for
women and .170 for men. Using Sewell et al., adjusting for number of siblings and
farm origin, the correlation for men between educational attainment and father’s
education (ryu) was estimated to be .29 and the correlation between father’s occu-
pation and father’s education (rxu) was estimated to be .47. The product gives an
impact of .136. The impact for women was slightly smaller.

The adjusted, as well as the unadjusted, impacts are less than the ITCV for
father’s occupation of .228. Not surprisingly, in Sewell et al.’s Tables 8 and 9
(1980, pp. 570–573), father’s occupation has a statistically significant direct effect
on educational attainment for men or women when controlling for several back-
ground characteristics, including father’s education as well as parental income,
mother’s education, mother’s employment, farm/rural origin, intact family, num-
ber of siblings, mental ability, and so on. Nonetheless, we are not always fortunate
enough to have estimates of correlations associated with the confounding variable.
The critical point here is that the distribution of the impact of measured covariates
can be used to evaluate the PRCI or assess the likelihood that a given impact will
exceed the ITCV.

Discussion

Causal inference is a controversial topic in the social sciences, where we are often
unable to conduct a randomized experiment or statistically control for all possible
confounding variables. In the literature, there are some attempts to deal with the
controversy about causal inference, but most approaches have practical or theoret-
ical limitations. Frank (2000) shifted the focus to quantifying the impact of a con-
founding variable, expanding the paradigm of sensitivity analysis by deriving the
single valued threshold, the ITCV, at which the impact would alter an inference
(assuming the impact is maximized). Though the metric of ITCV is interpretable in
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terms of the product of two correlation coefficients, little is known in any particu-
lar example regarding the likelihood of observing an impact as extreme as the
ITCV. Frank suggested using the impacts of observed covariates as a basis for a
reference distribution, but Frank’s doubly asymptotic theoretical reference distri-
bution is suspect. In this study we applied Pan’s (2002) more accurate approxima-
tion to the product of two dependent correlations to generate the reference
distribution and directly exploit Frank’s observation by using the ITCV and the
reference distribution in the integral to obtain the probability index PRCI.

Our overall approach can be considered an interpretation of sensitivity analy-
sis with a focus on inference. With sensitivity analysis one would represent a dis-
tribution of possible estimates for βx given a broad set of alternative conditions.
In particular, one can observe how sensitive the estimate of βx is to inclusion of a
confounding variable. Ultimately sensitivity analyses help researchers develop
nuanced interpretations of the effect of x on y, given the distribution of possible
estimates of βx.

Drawing on Frank’s representation of the impact of a confounding variable
through a single parameter, k, allows us to extend sensitivity analysis in two key
ways. First, because of the one-to-one correspondence between k and βx we can
obtain the value of k required to change βx a given amount or reduce βx below a
given threshold (see Frank, 2000, p. 182). Accounting for the impact of the con-
founding variable on the standard error of βx, we then determine the value of k that
would make tu just statistically significant. This then defines the impact threshold
for βx (ITCV). By identifying the threshold for altering inference, the PRCI focuses
attention on the conditions necessary to alter the single inference already made,
rather than implying a distribution of possible value impacts and corresponding
inferences as in sensitivity analysis. Thus the PRCI draws on statistical inference
to extract a single value from the distribution of βx as in a sensitivity analysis.

Second, if sensitivity were defined by multiple parameters it would be highly
complex to evaluate the threshold relative to impacts of existing covariates. But
given a relatively small number of covariates and applying Pan’s approximation
we can generate a reference distribution for k. We can then use the reference dis-
tribution to interpret the ITCV for βx as a probability index PRCI.

Where the ITCV indicates the impact necessary to alter a statistical inference,
the PRCI is the probability of observing such an impact. Probability was intro-
duced to causation through statements such as: “Assuming there is no common
cause of A and B, if A happens then B will happen with increased probability p”
(Davis, 1988; Einhorn & Hogarth, 1986; Suppes, 1970). But because probable
causes do not absolutely link cause and effect, probable causes are open to chal-
lenges of alternative explanations associated with confounding variables. This has
motivated many theories of causation (Dowe, 1992; Mackie, 1974; Reichenbach,
1956; Salmon, 1984, 1994; Sober, 1988). Alternatively, the PRCI provides a prob-
abilistic response to challenges to “probable causes.” In the Featherman and
Hauser example, PRCI = .999992 or the likelihood of observing an impact greater
than the ITCV was less than .00001. Thus there is only a very small probability
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that an alternate cause would account for the observed relationship between father’s
occupation and educational attainment (assuming the impacts of observed covari-
ates represent the impact of the unobserved covariate). In circumstances such as
these, one needs not contort theory nor conduct experiments to defend the inter-
pretation of a coefficient as an effect. This is consistent with how we approach
causal inference from a cognitive perspective drawing on the philosophical posi-
tions of multiple causes and probable causes (Einhorn & Hogarth, 1986; Mackie,
1974; Meehl, 1978; Mill, [1843] 1973).

But, how small must be the likelihood of an impact exceeding the ITCV (or how
large must be the PRCI) to conclude that an inference is robust? It may be tempt-
ing to set a cut-off value for the PRCI. Instead we offer the following guideline for
interpreting the magnitude of the PRCI. Specifically, if PRCI > .95, this indicates
that the probability of sustaining the original inference is large and we can say that
the statistical inference is very robust with respect to concerns about confounding
variables. If .8 < PRCI ≤ .95, the statistical inference is fairly robust, but we may
still need to check some possible confounding variables, and we should interpret
the causal inference regarding X with caution. When PRCI ≤ .8, we would claim
that the inference is not robust and researchers must consider the possibility that the
inference is not robust with respect to a confounding variable. Note that .95 and .8
for the PRCI are arbitrary, as is .05 for the significance level or .1, .3, and .5 for
small, medium, and large effect sizes. Researchers can make their own judgments
based on what is studied.

Using of the PRCI does not absolutely rebut a skeptic’s claim that the inclusion
of a confounding variable would alter the inference of a regression coefficient.
Rather, it allows researchers to quantitatively assess the skeptic’s claim that the
impact of the confounding variable is large enough to alter an inference (see
Cordray, 1986, for a similar, albeit non-quantitative, argument). If the skeptic’s
arguments are not compelling, one can more strongly argue that a statistically sig-
nificant coefficient is indicative of a causal relationship (although the size of the effect
may still be undetermined). In this sense, causal inferences are neither absolutely
affirmed nor rejected, but are statements that are asserted and debated (e.g., Abbott,
1998, pp. 164, 168; Cohen & Nagel, 1934; Einhorn & Hogarth, 1986; Gigerenzer,
1993; Sober, 1988; Thompson, 1999).

Of course, causal inference cannot be asserted based on statistical criteria alone
(see Dowe’s, 1992, critique of Salmon, 1984). A statistical relation combines with
a general theory of causal processes (e.g., Salmon, 1984, 1994) as well as a theory
of a specific causal mechanism (see McDonald, 1997; Scheines et al., 1998; Spirites
et al., 1993) to establish what Suppes (1970) described as a prima facie cause.
Although Featherman and Hauser (1976) focused on gender differences, they gen-
erally argued that family background and resources could provide opportunities to
pursue status attainment (including education). This theory combines with the sta-
tistically significant coefficients to establish family background as a prima facie
cause of educational attainment. Prima facie causes are then separated into spuri-
ous causes and genuine causes depending on whether the effect can be attributed
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to a confounding variable. In the Featherman and Hauser example, the PRCI of
.999992, far larger than .95, for father’s occupation is consistent with the assertion
that father’s occupation is a genuine cause of educational attainment.

Following Frank (2000) we have defined the PRCI relative to significance tests.
Led by Jacob Cohen, many have recently questioned the use of, or called for aban-
doning, significance tests (Cohen, 1990, 1994; Gigerenzer, 1993; Hunter, 1997;
Oakes, 1986; Schmidt, 1996; Sohn, 1998),7 although many of the arguments are
not new (Bakan, 1966; Carver, 1978; Meehl, 1978; Morrison & Henkel, 1970;
Rozenboom, 1960). Those against significance testing argue that using an arbitrary
cut-off to evaluate a null hypothesis inaccurately represents the data and falsely
dichotomizes decision making. Instead we should use confidence intervals to rep-
resent the lack of certainty in our belief about our data, power analysis to assess
the probability of a Type II error, and effect sizes to represent the magnitude of
effects. Those in favor of significance testing respond that making policy and deter-
mining courses of treatment require binary decisions, that an α level can be agreed
upon for making such a decision, and that the conservative stance of an unknown
relationship being nil accurately represents resistance to the implementation of a
new program or treatment (Abelson, 1997; Chow, 1988; Cortina & Dunlap, 1997;
Frick, 1999; Harris, 1997; Wainer, 1999).

The key point here is that the PRCI represents a middle ground. Based on the
significance test, the framework of the PRCI applies to binary decisions. But like
the confidence interval, the PRCI contextualizes a given probability value. Like the
effect size, the numerical value of the PRCI indicates an aspect of the strength of
the relationship between X and Y; the stronger the relationship between X and Y,
the greater must be the robustness of the causal inference to a confounding vari-
able. In fact, use of the PRCI is very much in the spirit of the recent guidelines for
statistical methods in psychology journals, whose authors, including many of the
most prominent statisticians in the social sciences, declined to call for a ban on sta-
tistical tests (Wilkinson et al., 1999, pp. 602–603). Instead the report recommends
results of statistical tests be reported in their full context. And the PRCI is part of
that context. Perhaps it is best to consider the PRCI like other statistical tools that
should be used based on the consideration of the researcher, referee, and editor
(Grayson, 1998).

Most generally, we presented the PRCI in the context of statistical inference
because contemporary theories of causation provide a sound basis for social scien-
tists to use statistical inference. For all intents and purposes, unmeasurable differ-
ences among people force social scientists to accept probable causes and statistical
relationships just as theoretical uncertainty in physical measurement forces physi-
cal scientists to accept the same (e.g., Suppes, 1970). Philosophers of science then
turned to probabilistic and statistical relations as essential and irreplaceable aspects
causality (Salmon, 1998). Nonetheless for social science to progress we must rec-
ognize that a statistical inference is not a final proclamation (e.g., Hunter, 1997;
Rozenboom, 1960; Sohn, 1998). This caution is consistent with Fisher’s qualified
interpretation of the p value (see Gigerenzer, 1993, p. 329). Therefore instead
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of abandoning statistical inference we should expand upon it to recognize the
limitations of the inference and the robustness of the inference with respect to
alternative explanations. It is in this vein that we developed the PRCI and that
we use it here.

Some researchers may be uncomfortable with the use of measured covariates to
generate a reference distribution for the impact of an unknown confounding vari-
able. But we acknowledge that this use of the reference distribution is only as valid
as is the set of covariates on which it is based, which is no different from any other
inference from a sample that must be representative of the population. In this light,
the impacts of existing covariates represent important information by which to
evaluate the PRCI.

Another way to verify the legitimacy of the use of the reference distribution to
evaluate the PRCI is to assess the sensitivity of the PRCI to deviations from the
assumption that the impact of an unknown confounding variable follows the ref-
erence distribution generated from the impacts of measured covariates. In the pres-
ent article, we assume that the impact of an unknown confounding variable can be
represented by the impacts of measured covariates, even if the impact of an
unknown confounding variable is not actually drawn from the reference distribu-
tion. Thus, it is desirable to examine the sensitivity of the PRCI to various assump-
tions about the impact of an unknown confounding variable.

In the empirical example pertaining to educational attainment, we obtained the
observed correlation rxy = .325. Thus, for this sensitivity analysis for the PRCI, we
fix the population correlation ρxy at .325 and hypothesize that the unobservable cor-
relations ρxu and ρyu could take small (.10), medium (.30), and large (.50) values,
according to Cohen (1988). Then, the corresponding PRCI values, referred as to
PRCI*, are listed in Table 1. As can be seen in Table 1, we do not include every
possible pair of .10, .30, and .50, because ρxu and ρyu are symmetric in the mathe-
matical expressions of the reference distribution. Therefore, we have removed
duplicate cases. In addition, without loss of generality we can change the sign of
the relevant variable to have all correlations positive. Therefore, there are only six
pairs of positive correlations used for this sensitivity analysis.

329

Probability Index of the Robustness of Causal Inference

TABLE 1
Sensitivity Analysis for PRCI at ρxy = .325

Hypothetical ρxu valuesa Hypothetical ρyu valuesa PRCI* Percent Changeb

.10 .10 .999988 −.0004

.10 .30 .999989 −.0003

.10 .50 .999995 .0003

.30 .30 .999990 −.0002

.30 .50 .999994 .0002

.50 .50 .999995 .0003
aThe hypothetical values are the small, medium, and large correlations, according to Cohen (1988).
b % of change = 100 × (PRCI* − PRCI)/PRCI, where PRCI = .999992.



From Table 1 we can see that the changes of the PRCI* values from the origi-
nal PRCI value (.999992) are extremely small, within only ±.0004%, which shows
that the PRCI is very robust to various assumptions about the impact of an
unknown confounding variable. Thus, the PRCI is very insensitive to the devia-
tions from the assumption that the impact of an unknown confounding variable fol-
lows the reference distribution that is generated from the impacts of measured
covariates. The integration of sensitivity analysis to the use of the PRCI strength-
ens the methodology of the PRCI proposed in the current study and gains greater
understanding of the validity of one’s inferences.

Three other caveats regarding the use of the reference distribution in develop-
ing the PRCI are critical. First, for the impacts of the measured covariates to have
a tractable distribution that is representative of the impact of an unmeasured con-
founding variable, we assume the impacts of the covariates are homogeneous. That
is, we must assume that the impacts of observed and unobserved covariates come
from a single distribution. Heterogeneity can be assessed by generating a P-P plot
of the observed impacts against the theoretical distribution. When the empirical
distribution of the impacts is heterogeneous, researchers need to evaluate the
sources of impacts according to substantive theory to identify the sources of large
and small impacts. For example, certain types of factors may have stronger causes,
or effects may be stronger for certain subpopulations. When the impacts are het-
erogeneous, it is reasonable, but arguable, to use the maximum impact to obtain a
reference distribution.

Second, one may be also concerned about the influence of small values of popu-
lation correlations on obtaining the value of the PRCI through Equation 7. The fact
that Pan’s (2002) approximation to the distribution of the product of two dependent
correlation coefficients is comparatively poor for small values of ρxu and ρyu becomes
more of a concern if the partial correlations of observed covariates with the outcome
and with the predictor of interest are smaller than their zero-order correlations, which
usually occurs in the social sciences because the covariates are often correlated with
one another. On the other hand, in the case of confounding, given the generally neg-
ative relationship between the t value for the predictor of interest and the product of
the correlations with respect to the covariates, when the impacts of the covariates are
small, the inferences about the predictor of interest through the t test are more likely
to be robust. Thus, we are more likely to retain the primary inference when impacts
are small, although we may have some difficulty in characterizing the distribution
for the small, partialled impacts of covariates. In other words, the poor approxima-
tion for small correlations would only result in more conservative decisions.

Third and last, note that the current approach assumes that all dependent and
independent variables are measured without error. This concern does not apply
directly to the confounding variable which is assumed to be perfectly measured to
maximize impact. But, it does apply to the distribution of impacts of covariates
used to generate the reference distribution. To the extent that the covariates are
unreliably measured, their impacts will underestimate their true impacts. When
reliabilities are known, a correlation disattenuation is recommended. That is, one
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can conduct all analyses on a correlation matrix that has been adjusted for attenu-
ation. It is especially important to use a correlation disattenuation when the impact
of covariates comprises two partial correlations, because partial correlations pro-
duce underestimated small impacts.

Appendix A

Let X, Y, and Z be trivariate normal variables. Based on Pan (2002), the distribu-
tion of the product of two dependent correlation coefficients, rxz × ryz, can be approx-
imated by a Pearson Type I distribution, and the density function is (cf. Elderton and
Johnson, 1969; Kendall & Stuart, 1977)

where k = rxz × ryz, and

and m1 and m2 are given by

with m1 < m2 if µ3 > 0 and m1 > m2 if µ3 < 0. Note that β1 and β2 are the coefficients
of skewness and kurtosis.

Appendix B

The following is the Mathematica code for computing the PRCI:
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mu2 = .002482
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Out[1]= 0.0073
Out[2]= 2.995
Out[3]= 0.002482
In[4]:= s = 6 * (b2 − b1 − 1) / (6 + 3 * b1 − 2 * b2)

m1 = (s − 2) / 2 − s * (s + 2) * Sqrt [b1 / (b1 * (s + 2) ̂ 2 + 16 * (s + 1))] / 2
m2 = (s − 2) / 2 + s * (s + 2) * Sqrt [b1 / (b1 * (s + 2) ̂ 2 + 16 * (s + 1))] / 2
asum = Sqrt [mu2 * (b1 * (s + 2) ^2 + 16 * (s + 1))] / 2
a1 = asum * m1 / (m1 + m2)
a2 = asum − a1
f0 = (a1 ^ m1) * (a2 ^ m2) / ((a1 + a2) ^ (m1 + m2 + 1) 

* Beta[m1 + 1, m2 + 1])
Out[4]= 373.862
Out[5]= 114.33
Out[6]= 257.533
Out[7]= 2.08843
Out[8]= 0.642091
Out[9]= 1.44634
Out[10]=7.99786
In[11]:= f [k_] : = f0 * (1 + k / a1) ^m1 * (1 − k / a2) ^m2

PRCI[p_] : = NIntegrate [f[k], {k, −a1, p}]
PRCI[.228]

Out[13]=0.999992

Converted by Mathematica October 13, 2002

Notes
1 In the case of having covariates, the impact is the product of two partial cor-

relation coefficients (see Frank, 2000, p. 166).
2 According to Frank (2000), the reference distribution for the impact of the

unobserved confounding variable can be characterized from the impacts of the
observed covariates, where each of the impacts is the product of two dependent
correlations (between the covariate and the predictor and between the covariate and
the outcome). Since the true distribution of the product of two dependent correla-
tions is unknown, the theoretical reference distribution is also unknown. Instead of
estimating the reference distribution directly from the impacts, Frank proposed that
the reference distribution could be approximated by transforming each component
correlation to an approximate normal (using the Fisher z transformation) and then
using the result from Aroian et al. (1978) to approximate the distribution of two
dependent normally distributed variables. But, his double approximation is tenu-
ous. On the other hand, Pan (2002) approximated the distribution of the product of
two dependent correlations as a Pearson Type I distribution (cf. Appendix A) by
applying the first four moments of the product of two dependent correlations to the
Pearson distribution family; any deviation from this approximation would be in the
fifth moment and higher. Thus, based on Frank’s proposal and Pan’s approxima-
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tion, the theoretical reference distribution can be more accurately approximated by
the Pearson Type I distribution using the mean values of the component correla-
tions as the sufficient statistics for the parameters, ρxu and ρyu, of the theoretical ref-
erence distribution.

3 Without loss of generality, t0 > 0 is assumed, because the case of t0 < 0 is sym-
metrical.

4Different tαs might be used for Equations 1 and 3, because the degrees of free-
dom are different. One is n − 2, and n − 3 for the other. But, the two tαs are very
close, and when n fairly large, they are almost identical. For simplicity, we used
the same symbol for the both tαs.

5For obtaining the reference distribution, here we tactically use Pan’s approxi-
mation to the product of two dependent correlation coefficients. A reviewer pointed
out that Pan’s approximation is for the product of two dependent correlation co-
efficients when a sample of (X, Y, Z) is drawn from a trivariate normal distribution,
and that the independent variables X and Z are not necessarily normally distributed
in regression analysis. The use of Pan’s approximation is reasonable because the
focal variables in the reference distribution are correlations, not original variables
X, Y, and Z. Also, our approach is as adequate as is the analysis of variables of
mixed types using correlation-based procedures, such as regression and structural
equation modeling.

6There are also two other methods to obtain the PRCI: (a) Programming using
Bowman and Shenton’s (1979) approach; and (b) Looking up the probability value
in Pearson and Hartley’s table (1972) with interpolation.

7 Perhaps it is not surprising that recent concerns about p-values have been
voiced more strongly by psychologists than sociologists. Sociologists have always
had to be more circumspect about interpreting p values because of the limited pos-
sibilities for experimentation in sociology.
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