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Social scientists are rarely able to gather data from the full range
of contexts to which they hope to generalize (Shadish, Cook, and
Campbell 2002). Here we suggest that debates about the gener-
ality of causal inferences in the social sciences can be informed
by quantifying the conditions necessary to invalidate an inference.
We begin by differentiating the target population into two sub-
populations: a potentially observed subpopulation from which all
of a sample is drawn and a potentially unobserved subpopulation
from which no members of the sample are drawn but which is part
of the population to which policymakers seek to generalize. We
then quantify the robustness of an inference in terms of the con-
ditions necessary to invalidate an inference if cases from the po-
tentially unobserved subpopulation were included in the sample.
We apply the indices to inferences regarding the positive effect of
small classes on achievement from the Tennessee class size study
and then consider the breadth of external validity. We use the sta-
tistical test for whether there is a difference in effects between
two subpopulations as a baseline to evaluate robustness, and we
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350 FRANK AND MIN

consider a Bayesian motivation for the indices and compare the use
of the indices with other procedures. In the discussion we emphasize
the value of quantifying robustness, consider the value of differ-
ent quantitative thresholds, and conclude by extending a metaphor
linking statistical and causal inferences.

1. INTRODUCTION

1.1. “But Do Your Results Pertain to. . .?”

Social scientists are faced with a dilemma because they are rarely able
to gather data from the full range of contexts to which they hope to
generalize (Shadish, Cook, and Campbell 2002). On the one hand,
overly broad generalizations can be misleading when applied to pop-
ulations that were not well represented by a sample. On the other hand,
confining generalization to a target population from which a sample
was randomly drawn can limit research results from informing the full
range of policies for which they might be relevant. The challenge “But
do your results pertain to . . .?” is essential, yet a quandary for social
scientists.

Given this problem, the generality of any inference in social
sciences is likely to be debated. But current debates are typically
qualitative—either a sample represents a target population or it does
not. And because generality is rarely certain, debates cast in qualitative
terms will often be divisive. Proponents will claim that results gener-
alize, and opponents will claim they do not. Furthermore, while there
will rarely be consensus for any given policy, those in the middle must
adjudicate in the qualitative terms in which the debate is cast.

Here we suggest that debates about the generality of causal in-
ferences in the social sciences can be informed by quantifying the con-
ditions necessary to invalidate an inference. In this sense we build on
recent work in sensitivity analyses (Copas and Li 1997; Frank 2000;
Gill and Robins 2001; Robins 1987; Rosenbaum 1987, 2001). But un-
like other sensitivity analyses that focus on the robustness of inferences
with respect to internal validity, we focus on the robustness of infer-
ences with respect to external validity. Thus, after controlling for all rel-
evant confounding variables (either through a randomized experiment
or statistical control), we ask how heterogeneous parameters must be to
invalidate inferences regarding effects.
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INDICES OF ROBUSTNESS FOR SAMPLE REPRESENTATION 351

We begin by differentiating the target population into two sub-
populations: (1) a potentially observed subpopulation from which all
of a sample is drawn, and (2) a potentially unobserved subpopulation
from which no members of the sample are drawn (cf. Cronbach 1982)
but which is part of the population to which policymakers seek to gener-
alize. We then quantify the robustness of an inference from the observed
data in terms of recomposition with the potentially unobserved subpop-
ulation.

1.2. From Causal Inference to Policy: The Effect of Small Classes
on Academic Achievement

The typical causal inference begins when an estimated effect exceeds
some quantitative threshold (e.g., defined by statistical significance or
an effect size). For the primary example of this article, consider the
results from the Tennessee class size studies, which randomly assigned
students to small and large classrooms to evaluate the effectiveness of
small classes (Cook 2002; Finn and Achilles 1990; U.S. Department of
Education 2002). As reported by Finn and Achilles (1990), the mean
difference in achievement on the Stanford Achievement Test for reading
for small classes (teacher pupil ratios of 1:13–17, n = 122) versus all other
classes (teacher-pupil ratios of 1:22–25, some with an aid, n = 209)
was 13.14 with a standard error of 2.34.1 This difference is statistically
significant. Finn and Achilles then drew on their analysis (including
the statistical inference as well as estimates of effect sizes) to make a
causal inference: “This research leaves no doubt that small classes have
an advantage over larger classes in reading and mathematics in the early
primary grades” (p. 573).

If Finn and Achilles’ causal inference is correct, it might be rea-
sonable to develop educational policy to reduce class size (e.g., the U.S.
Elementary and Secondary Education Act of 2000, which allocated $1.3
billion for class size reduction). Attention then turns to the validity of

1These results were obtained from Finn and Achilles (1990, table 5),
where the mean for other classes is based on the regular and aide classes com-
bined proportional to their sample sizes. Effect size was taken at the classroom
level to address concerns regarding the nesting of students within schools. The
pooled standard deviation and corresponding standard error were based on the
mean difference/effect size.
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352 FRANK AND MIN

the causal inference. First, though implementation of the random as-
signment may not have been perfect (Hanushek 1999) as is often the case
(Shadish et al. 2002, chaps. 9 and 10), random assignment of classes to
conditions likely reduced most differences between classrooms assigned
to be small or not (Cook 2002; Nye, Hedges, and Konstantopoulos
2000). Therefore any overestimate in the effect of small classes is unlikely
to be attributed to preexisting differences between the small classrooms
and other classrooms (in fact, Nye et al. suggest that deviations from
intended treatment may have led to an underestimate of the effects of
small classes). This is the power of randomization to enhance internal
validity (Cook and Campbell 1979).

Attention then turns to the generality of the results beyond the
particular sample. Critically, Finn and Achilles (1990) analyzed only a
set of volunteer schools, all from Tennessee. Thus, in the most restricted
sense, their findings generalize only to schools from Tennessee in the
mid-1980s that were likely to volunteer. And yet restricted generaliza-
tion places extreme limits on the knowledge gained from social science
research, especially experiments on the scale of the Tennessee class size
study (Shadish et al. 2002:18; Cronbach 1982). Do the results of the Ten-
nessee study mean nothing regarding the likely effects of small classes
in other contexts?

The challenge is how to establish external validity by bridging
between the sample studied to any given target population. Anticipat-
ing challenges to external validity, Finn and Achilles (1990, pp. 559–
60) noted that the schools studied were very similar to others in Ten-
nessee in terms of teacher-pupil ratios and percentages of teachers with
higher degrees. In the language of Shadish et al. (2002), social scien-
tists can then use this surface similarity as one basis for generalizing
from the volunteer sample to the population of schools in Tennessee.
But those challenging the generality of the findings could note that the
volunteer schools in the study were slightly advantaged in terms of per-
pupil expenditures and teacher salaries (Finn and Achilles 1990:559)
and Hanushek (1999) adds that the treatment groups were affected by
nonrandom and differential attrition (although Nye et al. [2000] argue
that this likely had little effect on the estimates). Thus, even for this
well-designed study, there is a serious and important debate regarding
the generality of the causal inference.

Critically, the debate regarding the generality of the findings be-
yond the interactions for which Finn and Achilles (1990) tested is either
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INDICES OF ROBUSTNESS FOR SAMPLE REPRESENTATION 353

disconnected from the statistical analyses used to establish the effect or
essentially qualitative—the sample is characterized as representative or
not. For example, the statistical comparison of schools in the Tennessee
class size study with other schools in Tennessee may suggest surface sim-
ilarity, but it does not quantify how results may be different if a sample
more representative of all schools in Tennessee had been used. Similarly,
critics suggesting that education in Tennessee is not like that in regions
such as California (e.g., Hanushek 1999) use qualitative terms; they do
not quantify the differences between their target population and the
sample necessary to invalidate the inference that small classes generally
improve achievement. Thus, in this article, we develop indices of how
robust an inference is by quantifying the sample conditions necessary
to make an inference invalid.

In Section 2 we present theoretical motivations for robustness
indices; in Section 3 we define an ideal or perfectly representative sam-
ple that includes cases from a potentially unobserved population as
well as the observed cases; in Section 4 we derive robustness indices
for the representation of a sample in terms of the sample recompo-
sition; in Section 5 we apply our indices to the Tennessee class size
study; in Section 6 we relate our indices to discussions of the theoret-
ical breadth of external validity; in Section 7 we consider a baseline
for our indices in terms of whether there must be a statistical differ-
ence between estimates from the observed and unobserved popula-
tions to make the original inference invalid; in Section 8 we consider
a Bayesian motivation for our indices; in Section 9 we compare with
other procedures. In the discussion we emphasize the value of quantify-
ing robustness, use of various quantitative thresholds for inference and
consider possible extensions. The conclusion extends a metaphor of a
bridge between statistical and causal inference (Cornfield and Tukey
1956).

2. THEORETICAL MOTIVATION FOR ROBUSTNESS INDICES

Our work builds on recent extensions of sensitivity analysis (e.g., Diprete
and Gangl 2004; Frank 2000; Gill and Robins 2001; Pan and Frank
2004; Robins 1987; Robins, Rotnisky, and Scharfstein 2000; Rosenbaum
1986, 2002; Scharfstein 2002) to quantify the thresholds at which infer-
ences are invalidated. For example, Rosenbaum (2002) shows that “to
attribute the higher rate of death from lung cancer to an unobserved
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354 FRANK AND MIN

covariate rather than to the effect of smoking, that unobserved covari-
ate would need to produce a six-fold increase in the odds of smoking,
and it would need to be a near perfect predictor of lung cancer” (p. 114).

Similar to Rosenbaum, Frank (2000) indexed the robustness of
statistical inferences to the impact of potentially confounding variables
that are unobserved. Cast in terms of the general linear model, Frank
defined the impact of a confounding variable on an estimated regression
coefficient and its standard error in terms of rv·y × rv·x, where rv·y is the
correlation between an unmeasured confound, v, and the outcome y
and rv·x is the correlation between v and x, a predictor of interest. Max-
imizing under the constraint: impact = rv·y × rv·x, Frank then developed
a single index of how large the impact must be to invalidate a statistical
inference.

In general, like the indices of Rosenbaum (2002), Robins (1989),
and Frank (2000), the indices we will develop extend sensitivity analysis
by quantifying the conditions necessary to invalidate an inference. Fur-
thermore, like Rosenbaum’s approach, we explore how extreme values
would establish limits or bounds on significance levels, while like Frank’s
approach, we develop our indices in terms of the general linear model.
But critically, we differentiate our approach from that of Rosenbaum,
Robins, and Frank because we focus here on the representation of the
sample, instead of on alternative explanations associated with selection
bias as exemplied by control functions (Gill and Robins 2001; Robins
1987; Rosenbaum 1986, 2002) or confounding (Frank 2000). That is,
our focus is more on external validity whereas most previous work has
focused on internal validity.

In motivation and derivation, our indices also resemble those
associated with assessment of publication bias in meta-analysis (e.g.,
Rosenthal 1979). We will attend to unobserved cases similar to those in
the file drawer, distinct from the data used to obtain an estimate. But
our indices will differ from the fail-safe n substantively and technically.
Substantively, publication bias is induced because those studies with
smaller effects are less likely to be published and therefore less likely to
be observed by the meta-analyst (e.g., Hedges 1992). In contrast, our
indices will quantify the concern of the skeptic regarding representation
of the sample, without reference to a specific censoring mechanism.

Technically, because we develop our indices in terms of zero or-
der and partial correlation coefficients, our approach is directly linked
to the general linear model (our indices also have a direct extension to
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INDICES OF ROBUSTNESS FOR SAMPLE REPRESENTATION 355

the multivariate case; see Orwin [1983]), unlike the fail-safe n, which is
specialized for meta-analysis. Furthermore, the file drawer problem, of
course, refers to meta-analysis in which the individual cases are them-
selves studies, whereas our indices refer to single studies in which the
individual cases are people. We comment more on this difference when
comparing our approach with recent extensions of the fail-safe n (in
Section 9.3).

3. AN IDEAL SAMPLE OF POTENTIALLY OBSERVED
AND POTENTIALLY UNOBSERVED SUBPOPULATIONS

The prima facie challenge to generalizing to a target population in the
social sciences is as follows: When subjects were not randomly sampled
from some larger population, the results might not be generalized be-
yond the sample. To delve deeper, consider the structural model for the
analysis by Finn and Achilles (1990):

Achievement = β0 + β1 small class, (1)

where small class takes a value of 1 if the classroom was small, 0 oth-
erwise. Using the baseline model in (1), we introduce the concept of an
ideal sample as one for which the estimate equals the population pa-
rameter. In this case, the ideal sample is one for which β̂ ideal

1 = β1. Of
course, if a sample is randomly drawn and a consistent estimator is used,
E(β̂1) = β̂ ideal

1 = β1. In other words, β̂1 will not equal β 1 only because
of sampling error. But here we will focus on the systematic difference
between β̂1 and β̂ ideal

1 that is due to differences in the composition of the
samples.

To quantify the systematic difference between an observed sam-
ple and an ideal sample, we define b = β̂1 − β̂ ideal

1 . We can then quantify
robustness with a question: How great would b have to be to invali-
date a causal inference? In the particular example presented here, how
great would the difference have to be between the estimated effect of
small classes in the Tennessee class size experiments and the estimated
effect from a sample that is ideal for some target population to invali-
date the inference that students learn more in small classes in that target
population?

Defining b through the comparison of β̂1 and β̂ ideal
1 quantitatively

expresses the notion of constancy of effect that is essential to causal

 14679531, 2007, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/j.1467-9531.2007.00186.x, W

iley O
nline L

ibrary on [02/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



356 FRANK AND MIN

inference. Gilbert and Mosteller (1972: p. 376) explain it this way: “When
the same treatment, under controlled conditions, produces good results
in many places and circumstances, then we can be confident we have
found a general rule. When the payoff is finicky—gains in one place,
losses in another—we are wary because we can’t count on the effect.”
In a similar vein, Shadish et al. (2002, p. 87) list their threats to external
validity in terms of variable effects as represented by interactions. In
absolute terms there is constancy of effect only when β̂1 = β̂ ideal

1 . But in
the pragmatic terms of robustness, we seek to quantify how large the
difference between β̂1 and β̂ ideal

1 must be such that the inference from β̂1

would not be made from β̂ ideal
1 .

Now, drawing on mixture models (McLachlan and Peel 2000),
we assume that β̂ ideal

1 = (1 − π )β̂ob
1 + πβ̂un

1 , where β̂ob
1 is the estimate

of β 1 from the observed sample (e.g., the Tennessee schools from the
1980s that volunteered for the study); β̂un

1 is the estimate for cases that
should be included in an ideal sample but which were unobserved (e.g.,
non-volunteer schools in Tennessee); and π represents the proportion
of the ideal sample that is constituted by the unobserved cases.2 (The
distinction between the observed and unobserved populations concerns
the mechanisms of selection into the sample, which we discuss in more
detail in Section 6.)

To focus on the systematic difference between β̂ ideal
1 and β̂1 that

is generated by sample composition, note that the sampling error in
β̂ob

1 recurs in β̂ ideal
1 and assume β̂un

1 with E(β̂un
1 ) = βun

1 . Now the focal
research question of this article can be phrased in terms of the unob-
served quantities: What combination of β̂un

1 (the relationship between
class size and achievement in the unobserved population of schools) and
π (the proportion of unobserved schools occurring in an ideal sample)
is necessary to invalidate the original inference?3 Critically, to focus on
the effect of sample composition on β̂ ideal

1 , we assume that there is no
bias in β̂un

1 that can be attributed to omitted confounding variables. In
our example, this could be accomplished if β̂un

1 were estimated from a
randomized experiment like that used to estimate β̂ob

1 .

2Note that π need not correspond to a population parameter; it is simply
the proportion of the unobserved sample that occurs in an ideal sample.

3Alternatively, we could define the bias of β̂ob
1 as β̂ob

1 − β1 = π (β̂ob
1 − βun

1 ),
and our question could be rephrased as “How much bias in β̂ob

1 must there be to
invalidate the original inference?”
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Population

ob
1β un

1β

Potentially  
observed

Potentially unobserved 

(a) Composition of the population 

Observed Sample             Ideal Sample  
  

ob
1̂β Replacing ob

1̂β 0ˆ
1 =unβ

=>

π=? 

(b) Neutralization by replacement, 0ˆ
1 =unβ

 

Observed Sample             Ideal Sample  
     

ob
1̂β Replacing ob

1̂β ?ˆ
1 =unβ

=>

π=.5
(c)  Neutralization by replacement, π=.5

FIGURE 1. Population and sample coefficients and proportions for replacement.

As shown in Figure 1, our conceptualization does more than
make the typical distinction between units that were sampled and those
that were not. In our framework, we consider the population to consist
of a potentially observed and unobserved subpopulation as in Figure
1(a). On the left of Figures 1(b) and 1(c), any observed sample con-
sists of units drawn only from the potentially observed subpopulation.
The ideal samples are shown on the right. As examples, an ideal sam-
ple might be achieved by replacing an unknown proportion (π = ?)
with cases for which β̂un

1 = 0 (as shown via the clear box below β̂un
1 in

part 1(b), where shading indicates the magnitude of the coefficient) or
by replacing half the sample (π = .5) with cases for which β̂un

1 is un-
known (as shown by the multiple possible shades below β̂un

1 in 1(c)).
Recomposition through the proportion replaced and the value of β̂un

1
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358 FRANK AND MIN

will be explored in the development of our indices.4 Critically, the move-
ment from the left to the right side of parts 1(b) and 1(c), from observed
to ideal sample, is hypothetical in conceptualization—the sample on the
right, by definition, will never be observed.

4. INDICES OF ROBUSTNESS FOR SAMPLE REPRESENTION

Given that a regression coefficient is positive and statistically significant,
in this section we use the distinction between β̂ob

1 and β̂ ideal
1 to derive

indices of the robustness of a causal inference to concerns regarding the
representation of the sample.5 We motivate our indices by asking “How
robust is an inference to hypothetical modifications of the sample to
make it more representative of a particular target population?”

We derive our indices in terms of sample correlations because
they are a commonly understood metric of effect size. But we note that
the statistical test for a correlation or partial correlation is equivalent to
that for a regression coefficient (Cohen and Cohen 1983; Fisher 1924).
As basic notation, define rob

xy as the statistically significant sample cor-
relation coefficient for the observed cases, run

xy as the sample correlation
coefficient for the unobserved cases, and rideal

xy as the correlation coef-
ficient for the ideal sample based on a combination of observed and
unobserved cases. Similarly, ρob

xy, ρun
xy, and ρ xy are the correlations in

the potentially observed, potentially unobserved, and combined popu-
lations, respectively.

4.1. Neutralization by Replacement

Inferences for correlation coefficients are based on sample sizes, means,
and variances of the predictor of interest (X) and the outcome (Y). To
quantify the robustness of an inference with respect to the representa-
tion of a sample, we begin by assuming that means and variances of X
and Y are the same for potentially observed and unobserved samples. If

4If one has more substantial information regarding the observed sample
or population, values other than β̂un

1 = 0 and π = .5 in parts (b) and (c), respectively,
could be used.

5See technical Appendix A for a quick reference to all of the indices de-
veloped in this article.
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INDICES OF ROBUSTNESS FOR SAMPLE REPRESENTATION 359

the means were not identical, differences in means could be accounted
for by adding hypothetical indicators of whether the data were poten-
tially observed (e.g., volunteered) or not to model (1), which adjust for
different central tendencies. The assumption of homogeneous variances
is consistent with standard assumptions made for inferences from gen-
eral linear models such as regression or analysis of variance. Moreover,
the key point here is that the framework for generating the indices is
purely hypothetical, and in this hypothetical context we focus on the
indicator of a relationship, the covariance—not on the characteristics
of context, such as means and variances. Nonetheless, in Section 4.3,
we relax the assumptions of equal means and variances.

Given that the means and variances of X and Y are the same
for potentially observed and potentially unobserved samples, rideal

xy is a
simple weighted average of run

xy and rob
xy. Thus if nob is the number of

originally observed cases, and nun is the number of cases to be replaced
by unobserved cases with correlation run

xy, then

r ideal
xy = [(

nob − nun)rob
xy + nunrun

xy

]
/nob. (2)

Defining π as the proportion of the sample that is replaced, π = nun/nob,
then

r ideal
xy = (1 − π )rob

xy + πrun
xy . (3)

To establish the conditions under which the original inference
would be invalid, we compare the value of rideal

xy to a quantitative thresh-
old of the same sign, r#. Thus the inference based on rob

xy ≥ r# is invalid
if rideal

xy < r#, which implies

(1 − π )rob
xy + πrun

xy < r#. (4)

The quantity r# could be defined by an effect size, such as .2, considered
large enough to be the basis of causal inference. In fact, we will consider
thresholds based on specific effect sizes throughout this article.

To define r# by statistical significance, begin by noting (Cohen
and Cohen 1983:52)

t = r
√

n − q√
1 − r 2

, (5)
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360 FRANK AND MIN

where q is the number of parameters estimated (including the intercept,
and the parameters for X and any other covariates) and t is the ratio
for assessing the statistical significance of r. We then obtain the value of
r that is just statistically significant, the threshold r#, by setting r = r#

t = tcritical and solving for r#:

r# = tcritical√
(nob − q) + t2

critical

. (6)

The threshold in (6) also could be interpreted as an effect size that has
a 50 percent probability of being statistically significant in an entirely
new sample.

Regardless of the threshold used to define r#, the relative trade-
off between replacement proportion and the missing correlation can be
represented by solving (4) for π :

π > (r# − rob
xy)/(run

xy − rob
xy). (7)

For example, for values of rob
xy = .1, .3 and .5 (nob = 500) the relation-

ship between π and run
xy, using statistical significance with p < .05 as a

threshold (i.e., r# = .09),6 is shown in Figure 2. The area above a given
curve indicates the region in which the initial inference is invalid, and
the area below a given curve indicates the region in which the inference
is valid. Thus, we refer to curves such as those shown as in Figure 2 as
robustness curves. We see that π increases exponentially with run

xy , with
π approaching 1 when run

xy = .09, the value of r#. Note also that the
curvature is more pronounced for lower values of rob

xy, indicating that
for smaller rob

xy, robustness increases rapidly only when run
xy approaches

r#.
Critically, Figure 2 suggests two key points as a basis for quan-

tifying robustness. First, the y-intercept, occurring at the dotted line
defined by run

xy = 0, corresponds to the challenge that the sample did
not represent a critical subpopulation for which ρun

xy = 0. Assuming
run

xy = ρun
xy = 0,7 (7) becomes

6We will consider thresholds defined by effect size as well as statistical
significance in the empirical examples.

7By definition, we cannot observe sample statistics for the unobserved
population. Therefore we assume that the unobserved sample statistics equal the
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FIGURE 2. Robustness curves defined by the sample proportion (π ) and correlation coeffi-
cient (run

xy) of unobserved cases (nob = 500 and α = 0.05) necessary to make the
overall inference invalid.

π > 1 − r#/rob
xy . (8)

Thus, assuming run
xy =ρun

xy =0, ifπ is greater than 1− r#/rob
xy, the inference

would be invalid if π of the sample were replaced. The right-hand side
of (8), 1 − r#/rob

xy, defines the index of external validity for run
xy = 0 and

replacement, or IEVR(π , run
xy = 0).8 Thus IEVR(π , run

xy = 0) defines the

unobserved population parameters. Alternatively, we could write E[run
xy ] = ρun

xy =
0 and correspondingly develop all further expressions based on expected values.
But, for the ease of notation we assume there is no sampling error and develop our
indices using symbols for the unobserved sample correlation.

8It can also be that the observed sample consists of two subsamples: one
for which rxy > 0 and the other for which run

xy = 0, mixed in proportion to π+

= n+ /n, the proportion in the observed sample with rxy > 0. Clearly the overall
inference would not change to the extent that cases for which rxy = 0 were replaced
by unobserved cases for which rxy = 0. Thus we could calculate the proportion of
the observed sample for which rxy > 0 that would need to be replaced to make the
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362 FRANK AND MIN

proportion of the observed sample that must be replaced with cases for
which the nil hypothesis is true to make the inference invalid.

Generally, IEVR(π , run
xy = 0) is large when r#/rob

xy is small, and
therefore when rob

xy is much larger than r#; the index reflects the extent
to which rxy exceeds r#. The index also is well bounded: 0 ≤ IEVR(π ,
run

xy = 0) < 1. The left inequality holds because r#/rob
xy cannot be greater

than 1 because the starting condition for our derivation is that rob
xy is

greater than the threshold defined by r#. The right inequality holds
because r#/rob

xy cannot be less than zero because both quantities take the
same sign by definition of r#. As a particular example, for rob

xy = .50 and
nob = 500 as in Figure 2, the IEVR(π , run

xy = 0) = .82, indicating that 82
percent of the original sample would have to be replaced with cases for
which run

xy = 0 to invalidate the original inference. In contrast, only 71
percent of the cases would have to be replaced if rob

xy = .3 and 12 percent
if rob

xy = .1.
To develop a second index, focus on the midpoint at π = .5

defined by the dashed lines in Figure 2. Computationally, begin with
(4), substitute π = .5 and solve for run

xy:

run
xy < 2r# − rob

xy . (9)

Thus if run
xy < 2r# − rob

xy, the original inference would be in-
valid if half the sample were replaced with cases from the po-
tentially unobserved subpopulation. We refer to 2r# − rob

xy as the
index of external validity for π = .5 and replacement, or IEVR
(π = .5, run

xy). Note that the IEVR(π = .5, run
xy) is a linear function of

rob
xy as can be observed from (9). Examples in Figure 2 indicate that for

rob
xy = .5 the IEVR(π = .5, run

xy) = − .32; for rob
xy = .3 the IEVR(π = .5,

run
xy) = − .12; and for rob

xy = .1 the IEVR(π = .5, run
xy) = .08. In each case,

if run
xy is less than the IEVR(π = .5, run

xy), the inference would be invali-
dated if half the sample were replaced with cases from the unobserved
subpopulation.9

inference invalid, merely by defining π = nun/n+ instead of π = nun/nob as above. But
this would imply that there are existing, nonignorable, interactions in the observed
data, and so we do not present this as our main index.

9Interestingly, for rob
xy = .1, IEVR(π = .5, run

xy) = .08, indicating that there
must be little difference between rob

xy and run
xy for the inference to be valid.
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INDICES OF ROBUSTNESS FOR SAMPLE REPRESENTATION 363

Both the IEVR(π , run
xy = 0) and the IEVR(π = .5, run

xy) are indices
of the robustness of an inference to concerns regarding the represen-
tation of a population. The critical difference is that IEVR(π , run

xy = 0)
accepts the nil hypothesis, that run

xy = ρun
xy = 0, and then considers sample

recomposition through π . On the other hand, IEVR(π = .5, run
xy) does

not accept the nil, but begins with the hypothesis that the potentially un-
observed sample is as large as the potentially observed sample, and then
determines run

xy needed to generate a different inference from the ideal
sample than from the observed sample. Thus the two indices quantify
different aspects of sample recomposition.

Critically, because the sampling distribution for a partial correla-
tion is equivalent to that for a zero-order correlation (Cohen and Cohen
1983; Fisher 1924), either IEVR(π , run

xy = 0) or IEVR(π = .5, run
xy) can

be extended readily to models containing covariates, u. In particular,
replace rob

xy with rob
xy|u and note that the degrees of freedom are ad-

justed by q as in (5) and (6) (see Cohen and Cohen 1983:103–7; Fisher
1924). Thus the indices can be used in conjunction with the general
linear model, especially models that use covariates to make differences
between treatment and control ignorable (Winship and Sobel 2004).

We note three assumptions we made as we developed our in-
dices. First, our scenario began with an estimate of a regression co-
efficient from a general linear model. As such, we assumed that Y is
a continuous variable and the relationship between X and Y is linear.
Furthermore, we assumed that the model is correctly specified in that
all relevant confounding variables have been controlled for and thus
there is no remaining spurious component in the estimated relationship
between X and Y (cf. Frank’s index [2000] for robustness due to omitted
confounding variables or Rosenbaum’s index [1986, 2002] for selection
bias). Correspondingly, the extension to the partial correlation in the
preceding paragraph allows us to accommodate models that employ
statistical control.

Second, the mixture model implies that Y may not be normally
distributed (e.g., Y may be bimodal because there are two distinct
subpopulations). Thus if the unobserved data were in fact observed,
we could estimate βob

1 , βun
1 , and π via a finite mixture model (see

McLachlan and Peel 2000). But our scenario is purely hypothetical;
by definition the observed sample does not include units from the
potentially unobserved subpopulation. Therefore we cannot estimate
the mixture model. Moreover, because model fit only improves with the
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364 FRANK AND MIN

number of components estimated in a mixture model, standard signif-
icance tests assuming only a single component are conservative, and
therefore the indices we developed based on significance tests will be
conservative. Thus, we use the mixture model primarily as a rhetorical
device to illuminate the assumptions of, and challenges to, inference
(and, in Section 8, we consider a Bayesian motivation for the indices).
The derivation of our indices is, however, based on the maximum like-
lihood estimates that would be obtained if the unobserved sample were
available for estimation via a mixture model (Day 1969:464; Lindsay
and Basak 1993; McLachlan and Peel 2000).

Third, though we accept the initial inference regarding β 1, we
recognize that there is always the possibility of a Type I or Type II error
due to sampling variation. (Type I is a rejection of the null hypothesis
when in fact it is true; Type II is a failure to reject the null hypothesis
when in fact it is false.) Essentially, the concern regarding Type I and
Type II errors relative to our indices is neither greater nor less than
it would be for any statistical inference, as the initial inference is the
baseline for our indices.

4.2. Neutralization by Addition (Contamination)

Instead of replacing potentially observed cases with potentially unob-
served cases as in the previous subsection, consider instead augmenting
a data set with further observations. The effect on the sample is de-
scribed as contamination by Donoho and Huber (1983).10 The overall
sample size increases, with the ideal sample achieved by adding an un-
known number of cases with β̂un

1 (or run
xy) = 0 and π unknown or with

π = .5 and β̂un
1 (or run

xy) unknown. The fundamental relationship between
π and run

xy remains as defined in (7).
To develop expressions for indices for added cases we reexpress

(2) in terms of the sizes of the potentially observed and potentially
unobserved samples without the constraint of preserving the overall

10In our framework the new cases contaminate if they make the infer-
ence invalid, just as for Donoho and Huber (1983) the cases contaminate if they
“break” the estimator, although both types of contamination are merely objective
phenomena from a statistical standpoint.
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INDICES OF ROBUSTNESS FOR SAMPLE REPRESENTATION 365

sample size:

r ideal
xy = (

nobrob
xy + nunrun

xy

)
/
(
nob + nun). (10)

As in (7), to obtain an index for run
xy = ρun

xy = 0 based on contamination,
begin by setting rideal

xy < r#. If effect size is used to define the threshold
of inference, then we merely specify the value of r# in terms of a specific
effect size, such as .2. On the other hand, calculations are more complex
if r# is specified in terms of statistical significance because the threshold
changes with the sample size. In particular, noting that r# is now a
function of nob and nun, substitute r# for rideal

xy in (10), then using (5)
reexpress r# in terms of n and tcritical, solve for nun and define it as nun∗:

nun∗ =
nob

[
nob

(
rob

xy

)2 − 2t2
critical + rob

xy

√
(nob)2

(
rob

xy

)2 + 4t2
critical(t

2
critical − q)

]
2t2

critical

.
(11)

Then if nun >nun∗, the original inference is invalid.11 Calculating π as the
proportion nun∗/(nob + nun∗) then defines an index of external validity
for run

xy = 0 and contamination, or IEVC(π , run
xy = 0). That is, IEVC(π ,

run
xy = 0) indicates what proportion of cases in the ideal sample must

come from the unobserved population to invalidate the inference from
the observed data. Thus if π ≥ nun∗/(nob + nun∗), then the inference
from the observed data is invalid.

Next, the fundamental relationship defining the replacement in-
dex for π = .5 is not a function of the sample size. Furthermore, if
π = .5, then nun = nob. The combined sample size is thus known, as is
the new significance level:

r## = tcritical√
(2nob − q) + t2

critical

. (12)

Thus replacing r# in (9) with r## in (12), if run
xy < 2r## − rob

xy then
the inference would be altered if the sample were doubled by adding

11We could also correct the critical value of t for changes in degrees of
freedom (see Min and Frank 2002), although this correction is likely to be small;
for n > 60; t(df = 60) = 2.000 is only .04 greater than t(df = ∞) = 1.96.
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366 FRANK AND MIN

cases with run
xy. The quantity 2r## − rob

xy then defines the index of external
validity for π = .5 and contamination, or IEVC(π = .5, run

xy). That is, if
run

xy ≤ 2r## − rob
xy, then the original inference based on the observed data

is invalid.

4.3. A General Formula for rxy: Relaxing Assumptions of Equal Means
and Variances

In the preceding subsections we assumed that the means and variances
of X and Y were the same for potentially observed and unobserved
samples, arguing that these were easily adjusted for or that they were
analogous to population assumptions for the general linear model. Fur-
thermore, we cannot use a complex mixture model that relaxes these
assumptions to derive closed form expressions for robustness indices
because “explicit formulas for parameter estimates [for mixture finite
models] are typically not available” (McLachlan and Peel 2000:25). We
can, however, draw on mixture models to present a general expression
for rxy, the correlation in a combined sample, that does not assume
equal means and variances between subsamples.

Drawing on Day (1969: 466), and defining sxy as a covariance,
an expression for a sample covariance for the mixture of an observed
and unobserved component is

sxy = (1 − π )sob
xy + πsun

xy + (1 − π )π (x̄ob − x̄un)(ȳob − ȳun).

Using this general result, as derived in Appendix B, an expression for
rxy that does not assume equal means and variances is:12

rxy = (1 − π )rob
xysob

x sob
y + πrun

xy sun
x sun

y + (1 − π )π
(
x̄ob − x̄un

)(
ȳob − ȳun

)
√√√√[

(1 − π )
(
sob

x

)2 + π
(
sun

x

)2 + (1 − π )π
(
x̄ob − x̄un

)2]
×[

(1 − π )
(
sob

y

)2 + π (sun
y

)2 + (1 − π )π
(
ȳob − ȳun

)2]
.

(13)

Note that the numerator is a function of weighted covariances plus
a correction based on (1 − π )π (x̄ob − x̄un)(ȳob − ȳun). The correction

12Expressions for the first four moments for the distribution of rxy, using
Fisher z to transform rxy to be approximately normally distributed, can be found in
Day (1969) and Lindsay and Basak (1993).
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INDICES OF ROBUSTNESS FOR SAMPLE REPRESENTATION 367

contributes positively to rxy if (x̄ob − x̄un) and (ȳob − ȳun) take the same
sign. This holds because the correction represents a between sample
(observed versus unobserved) contribution to the correlation. In the
example of the class size study, the correction would decrease the re-
lationship between small classes and achievement if the classes in the
unobserved sample (e.g., nonvolunteer classes) had lower achievement,
making (ȳob − ȳun) positive, and there were more small classes in the
unobserved sample than in the observed sample, making (x̄ob − x̄un)
negative (the resulting product of [x̄ob − x̄un] and [ȳob − ȳun] would then
be negative).

To focus on the assumption of equal variances, consider x̄ob =
x̄un and ȳob = ȳun. Then

rxy = (1 − π )rob
xysob

x sob
y + πrun

xy sun
x sun

y√√√√{(
sun

x

)2 + (1 − π )
[(

sob
x

)2 − (
sun

x

)2]}
× {

(sun
y )2 + (1 − π )

[
(sob

y )2 − (sun
y )2)

]}
, (14)

which represents a simple weighted correlation coefficient, with weights
proportional to π and (1 − π ). Thus a priori beliefs about the values of
the unobserved variances can be inserted into (14). That is, this equation
can be used to broaden the scope of external validity to account for
different scales used to measure treatments or outcomes between the
observed and unobserved samples. Finally, note that if the variances in
the unobserved sample equal those of the observed sample, then (14)
reduces to the special case we focus on in (3).

5. EXAMPLE: THE INFERENCE THAT SMALL CLASSES
IMPROVE ACHIEVEMENT

Recall that in our example the inference made by Finn and Achilles
(1990) that smaller classes improve achievement was based on a non-
random sample of volunteer elementary schools in Tennessee in the mid-
1980s. We also note that Finn and Achilles and others explored various
interaction effects. In particular, Finn and Achilles reported no signif-
icant differences of the class size effect by location or grade, and Nye
et al. (2002) reported that differences by prior level of achievement were
not statistically significant (there were some small differences by eth-
nicity, on which we will comment later in the discussion). Thus, given
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FIGURE 3. Robustness curve and IEVR(π , run
xy = 0) and IEVR(π = .5, run

xy) for the Tennessee
class size study by Finn and Achilles (1990).

fairly stable effects across subsamples, we now ask: What must be π and
run

xy to invalidate the overall inference that would be made from an ideal
sample representing some population of schools other than those that
volunteered in Tennessee in the mid 1980s?

A robustness curve for Finn and Achilles’ (1990) results is shown
in Figure 3 (rob

xy = .296, r# = .107). The dashed lines indicate that the
intersection at run

xy = 0 occurs for π = .64, which defines the IEVR
(π , run

xy = 0) as presented in (8). Thus 64 percent or more of the vol-
unteer schools would have to be replaced with a sample for which
run

xy = 0 to invalidate the original inference from the observed data.
As a complement, the solid lines indicate that the intersection at π =
.5 occurs at −.08, which is the IEVR(π = .5, run

xy) as defined in (9).
Thus, assuming half the sample were replaced, run

xy would have to be
less than −.08 to invalidate the original inference. If r# = .2 were used
to establish the threshold, the IEVR(π = .5, run

xy) would equal .10 and
IEVR(π , run

xy = 0) would be 32 percent. Thus, as might be expected
for a relatively large sample, robustness is not as great if the threshold
is defined by a moderate effect size instead of by statistical signific-
ance.
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INDICES OF ROBUSTNESS FOR SAMPLE REPRESENTATION 369

Following Rosenbaum’s (2002) approach of placing a bound on
the overall estimate, if run

xy = − 1, then approximately 15 percent of the
sample would have to be replaced to invalidate the inference. Refer to
this as π |(run

xy = − 1), the lower bound on π . Clearly there is no specific
upper bound for π as run

xy approaches 1, because if run
xy >rob

xy the inference
would be valid regardless of the value of π . Thus .15 < π < 1.

Regarding bounds for run
xy, clearly the inference changes only if

run
xy < r#. Thus there is no need to consider run

xy ≥ r# in terms of the
robustness of the inference. Finally, as implied by the original bound
on π , if π < .15 then there is no value of run

xy that can make the original
inference invalid. Thus − 1 ≤ run

xy ≤ r#; in this case − 1 ≤ run
xy ≤ .107.

Now consider adding cases instead of replacing them. Then 2153
cases for which run

xy = 0 would have to be added to alter the inference
in an ideal sample. The new cases would comprise 87 percent of an
ideal sample, as defined by the IEVC(π , run

xy = 0) in (11). Alternatively,
if the sample size were doubled by adding cases from the potentially
unobserved population, the inference would be invalid only if run

xy were
less than −.14, as defined by the IEVC(π = .5, run

xy) in Section 4.2.
Calculation of the robustness indices by no means resolves the

debate regarding the validity of the inference that small classes have a
positive effect on achievement. But the debate has now been quantified
in terms of the relationship between class size and achievement in cases
from the unobserved population and proportional representation in an
ideal sample. Now, those making the causal inference cannot merely
claim that attempts were made to recruit all Tennessee schools and that
the volunteer schools were similar to others—they must claim that those
schools that volunteered were at least representative of 36 percent of the
population or that run

xy > − .08. Similarly, critics of the causal inference
cannot merely suggest that there were potential threats to external valid-
ity (such as nonrandom sampling and differential attrition). They must
argue that such threats would have rendered 64 percent of the sample
nonrepresentative or that if half the sample were replaced to construct
an ideal sample, run

xy < − .08.

6. ROBUSTNESS INDICES AND THE BREADTH
OF EXTERNAL VALIDITY

Our framework and resultant indices can be interpreted in two ways in
terms of the breadth of external validity (cf. compare Cronbach [1982]
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370 FRANK AND MIN

with Shadish et al. [1991]). In the narrowest sense, our indices quan-
tify how robust inferences are to generalizations to the population from
which the cases were directly sampled. In our example, the narrow do-
main refers to schools in Tennessee in the mid-1980s, including those
who did not volunteer as well as those who did volunteer. Thus the key
distinction between the two subpopulations derives from the mechanics
of sampling that caused attrition or nonresponse. In the broadest sense,
the indices can be interpreted in terms of external validity beyond the
immediate sampling frame. In the example of the Tennessee class size
study, Hanushek (1999) refers to aggressive efforts to reduce class size in
California in the late 1990s that were motivated in part by the Tennessee
class size studies (CSR 1998). Here the distinction between the subpop-
ulations is based on the intent of the researchers and policymakers.

Clearly, classrooms in California in the late 1990s were not part
of the original sample frame for a study conducted in Tennessee in
the mid-1980s. Moreover, classrooms in California in the 1990s may
have been less advantaged than those that volunteered for the Tennessee
experiments as California tended to have low per pupil expenditures
relative to the rest of the nation. (Ed Source [2003], recalling also that
classrooms in the Tennessee study were more advantaged than the state
as a whole in terms of per pupil expenditures and teacher salaries.) If
small classes were especially helpful for advantaged classrooms, then the
effect of small classes in California could be less than that found by Finn
and Achilles (1990) in Tennessee, and the inference may not generalize.
But our index quantifies how much lower the effect from a replacement
sample in California would have to be to invalidate the overall inference
that small classes improve achievement in some combination of schools
representing Tennessee in the mid-1980s and California in the mid-
1990s.13

Regardless of whether they define the target population in the
restrictive or broad sense, social scientists must debate external validity

13In this particular example, any overestimate of the class size effect for
California may be compensated by the higher percentages of minorities, for whom
class sizes were more effective, in California than in Tennessee (25 percent of the
classrooms reported on by Finn and Achilles [1990] are minority, whereas Hispanics
alone account for 25 percent of the students in California [NCES 2003]). Thus in
considering the extension of Finn and Achilles’ results to California, policymakers
and social scientists must balance the possibility of weaker effects of small classes for
less advantaged schools against the stronger effects of small classes for minorities.

 14679531, 2007, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/j.1467-9531.2007.00186.x, W

iley O
nline L

ibrary on [02/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



INDICES OF ROBUSTNESS FOR SAMPLE REPRESENTATION 371

through scientific reasoning. For example, Shadish et al. (2002:353–54)
list five principles of generalized causal inferences including surface sim-
ilarity; (1) judging the apparent similarities between the things scientists
study and the targets of generalization; (2) making discriminations that
might limit generalization; (3) ruling out irrelevancies that do not change
the generalization; (4) making interpolations and extrapolations; and (5)
providing causal explanations. These are all assertions that depend on
scientific reasoning.

Our indices then work in conjunction with the principles for gen-
eralization. For the more restricted interpretation of external validity
for the example, Finn and Achilles (1990) established that surface sim-
ilarity between the schools in the study and all schools in Tennessee
is moderate to high and that most differences between the sample and
the target populations were minimal. Thus relatively small values of
the indices may be taken as indicators of robustness. In contrast, when
social scientists consider broader generalizations, such as to California
in the mid-1990s, the sample and target population may differ substan-
tially. And it would be more difficult to rule out factors that may reduce
rideal

xy below a threshold. Correspondingly, higher values of the indices
are required to argue that an inference is robust when we seek to make
broader generalizations.

7. WHETHER THE DIFFERENCE BETWEEN rob
xy AND run

xy
WOULD BE STATISTICALLY SIGNIFICANT

Thinking of external validity in terms of nonadditive effects pro-
vides a framework for comparing rob

xy against run
xy. In particular, |rob

xy
− run

xy | could be compared against the criterion necessary to re-
ject the hypothesis of no interaction between source of data (ob-
served versus unobserved population) and size of effect. Formally, de-
fine the Fisher z of r: z(r) = .5[ln(1 + r) − ln(1 − r)], and define
w = |z(rob

xy) − z(run
xy)|. Then, following Cohen and Cohen (1983:53–55),

the interaction between source of data and size of correlation is sta-
tistically significant if w > 1.96

√
1

(1−π )(nob−q) + 1
π (nob−q) , where q equals

three plus the number of parameters estimated in the model. Defining
m = 1.96

√
1

(1−π )(nob−q) + 1
π (nob−q) , rob

xy would be statistically different from
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372 FRANK AND MIN

run
xy if

rob
xy >

r# − e2m(1 + r#) − 1 −
√√√√4

(
e2m − 1

)
(π − 1)

(
e2mπ + r# + e2mr# − π

)
+ (1 − r# + e2m(1 + r#))2

2
(
e2m − 1

)
(π − 1)

.
(15)

Thus the right-hand side of (15) defines the index of external validity be-
yond interaction (IEVBI). For the Tennessee class size example, setting
π = .5, the IEVBI is .215, which is exceeded by rob

xy = .296. Therefore, if
half the sample were replaced, rob

xy would have to be significantly differ-
ent from run

xy to alter the overall inference regarding the effect of small
schools. Thus, either the overall inference would not change if half the
cases were replaced, or the inference would change only if rob

xy were sig-
nificantly different from run

xy. But, if rob
xy were significantly different from

run
xy, then inferences should be made about the two populations sepa-

rately, and thus the original inference based on rob
xy applies at least to the

population from which the observed cases were drawn.
Generally, the IEVBI offers an important clarification to debates

regarding the presence of interactions on making causal inferences, with
some arguing for the ability to make a causal inference even if the effect
varies across subsamples (e.g., Cook and Campbell 1979) and others ar-
guing that effects must always be reported by subsample (e.g., Cronbach
1982). If rob

xy is greater than the IEVBI , then perhaps the Campbell and
Cronbach camps could agree that one would either report an overall
effect (if run

xy were greater than IEVC[π = .5, run
xy]) or one would report

separate effects (if run
xy were less than IEVC[π = .5, run

xy]). When rob
xy is

less than the IEVBI , the inference is murkier; when small interactions
in the data could alter the overall inference they must decide whether to
report an overall effect (Campbell) or effects by subgroups (Cronbach).
Perhaps this murkier situation accurately reflects the small value of rob

xy
relative to the threshold for inference.

Of course, the above calculations assume that we use statistical
significance to determine whether there is a discernable difference in the
effect between the observed and unobserved samples. Alternatively, w

could be compared against the criterion necessary to distinguish one
component from another in terms of bimodality or significance tests
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INDICES OF ROBUSTNESS FOR SAMPLE REPRESENTATION 373

from finite mixture models that do not assume an indicator of the source
of the data has been measured (see McLachlan and Peel 2000:p 11).
Generally, we could describe an inference as robust in an absolute sense if
it could be invalidated only if the unobserved sample must be discernibly
different from the observed sample, using statistical significance, effect
size, or other criteria to operationalize discernable.

8. A BAYESIAN MOTIVATION FOR THE INDICES

While we motivated our indices by considering how observed and un-
observed samples combined to form an ideal estimate from a mixture
model, we could also have motivated our indices from a Bayesian per-
spective. In particular, we define the likelihood in terms of the observed
sample and the prior in terms of the sample from the potentially unob-
served population. Following Lee (1989:169), the Fisher z transforma-
tion of each sample correlation is normally distributed with variance
1/n and is an unbiased estimate of the Fisher z of the population corre-
lation. Therefore, the estimated posterior mean for the ideal sample is
(Lee 1989:p 175):

z(r ideal
xy ) = Var(r ideal

xy )
[
Var−1(rob

xy

)
z
(
rob

xy

) + Var−1(run
xy

)
z
(
run

xy

)]
= 1/(nob + nun)

[
nobz

(
rob

xy

) + nunz
(
run

xy

)]
= (1 − π )z

(
rob

xy

) + πz
(
run

xy

)
.

(16)

This latter expression is the Bayesian analog to our original expression
for rideal

xy from the mixture model in (3).
Using the Bayesian approach, the posterior distribution for ρxy

for the whole population is ∼N(z[rideal
xy ], [nob + nun ]−1). This posterior

can then be used to quantify robustness by considering the value of
run necessary to make rideal

xy fall within a 95 percent highest posterior
density (HPD) interval (which is similar to a frequentist 95 percent
confidence interval). Applying the Bayesian approach to the example
of the Tennessee class size study, IEVCBayesian (π , run

xy = 0) = 2129 and
IEVCBayesian (π = .5, run

xy) = − 0.15, which differ slightly from IEVC(π ,
run

xy = 0) of 2153 and the IEVC(π = .5, run
xy) of −0.14 (as calculated in

Section 5).
Though the Bayesian formulation may be intuitive for some,

we favor the frequentist approach for three reasons. First, while the
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374 FRANK AND MIN

Bayesian formulation applies to the IEVC wherein a new estimate is
obtained based on combining information from the posterior and the
prior, it does not apply as well to the IEVR in which some of the ob-
served information is replaced with that from the prior. Second, our
calculations based on the mixture model are exact for rideal

xy , whereas the
Bayesian approach is based on an approximation. Third, though the
Bayesian framework is quite popular in statistics, social scientists are
still inclined to apply frequentist interpretations to their analyses. For
example, in reviewing Volume 70 (2005) of the American Sociological
Review, only 3 out of 29 articles using inferential statistics made explicit
use of a Bayesian approach (Cole 2005; Karinek et al. 2005; Mallard
2005).14 Thus we appeal to the more common frequentist framework in
considering the conditions necessary to alter an inference. On the other
hand, few social scientists adhere to a strict frequentist interpretation
as consideration of an array of possible effects is often implicit in sensi-
tivity analyses, choices of covariates, and analyses by subsample. In this
sense, our indices bridge between the frequentist and Bayesian interpre-
tations because our indices ask the frequentist to consider alternative
inferences for different samples. Ultimately, the comparability of the ex-
pressions and values in the empirical example suggests that the purely
Bayesian and frequentist approaches will generate similar impressions
of the robustness of inferences.

9. COMPARISON WITH OTHER PROCEDURES

9.1. Cross-Validation Studies

Our approach is like that of cross-validation indices (e.g., Cudeck and
Browne 1983) in that we consider two separate samples. But both
samples are observed in the construction of cross-validation indices (in
fact the cases are often randomly separated), with the cross-validation
index calculated by assessing the fit in one sample based on the pa-
rameter estimates from another. In contrast, the supplemental sample

14This ignores applications of multilevel models that can be interpreted
as “empirical Bayes” but also can be interpreted from weighted least squares or
generalized least squares perspectives (Raudenbush and Bryk 2002) and in which
the authors interpreted p-values from a frequentist perspective.
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INDICES OF ROBUSTNESS FOR SAMPLE REPRESENTATION 375

necessary to construct the ideal estimate is unobserved. Thus a cross-
validation index indicates a particular model is good relative to others if
the model fits well in the observed cross-validation sample, whereas for
us an inference is robust if the hypothetical unobserved sample would
have to be considerably different from the observed sample to alter a
statistical inference.

9.2. Breakdown Points

Our indices are similar to those for defining the breakdown point of
an estimator in that they consider the statistical effects of altered sam-
ples (indeed our language of contamination and replacement is that
of Donoho and Huber [1983]). Breakdown points refer to the properties
of estimators (e.g., the least squares or maximum likelihood estimates of
β 1) and are defined by the smallest amount of contamination that may
cause an estimator to take on arbitrarily large aberrant values (Donoho
and Huber 1983:157). Thus, for example, the breakdown point for the
least squares estimate of β 1 is one, because one extreme observation
can infinitely alter an estimate. But our indices differ from breakdown
points because they apply to an inference for a specific sample, instead
of to the estimator, independent of a sample. For example, we report the
IEVR(π , run

xy = 0) for the Finn and Achilles (1990) class size effect as 64
percent, while IEVR(π , run

xy = 0) could be smaller or larger for another
study, but the breakdown point for the least squares estimate, like all
other least squares estimates, is one.

9.3. Extension of Fail-Safe n

We note that calculations of the fail-safe n in meta-analysis have been
extended to characterizations of the likely underlying sampling distri-
bution of effect sizes. For example, trim and fill procedures (e.g., Duval
and Tweedie 2000) use funnel plots to examine evidence of publication
bias under the assumption that the distribution of effect sizes is sym-
metric. Thus if one tail appears censored, the procedure trims from the
other tail and fills in the censored tail until the distribution appears
symmetric. Following this approach, we could consider indices based
on replacing those observations that have the largest residuals from the
overall trend. This is a refinement of our IEVR(π , run

xy = 0) in which
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376 FRANK AND MIN

we focus on replacing cases with correlation with exactly rob
xy. Impor-

tantly, such focus on individual data points may be more defensible in
the meta-analytic context where each point represents many cases and
is thus measured with higher precision than in the typical regression
analysis in which each point represents only a single observation. Thus
we leave consideration of replacement of specific data points to further
research on the relationship between statistical influence and statistical
inference.

9.4. Approaches for Missing Data

Our approach may be compared with others that have been applied to
missing data, such as maximum likelihood estimation or multiple im-
putation (e.g., Allison 2000; D’Agostino and Rubin 2000; Daniels and
Hogan 2000; Dehejia and Wahba 1999; Little 1992; see the review by
Collins, Shafer, and Kam 2001). These approaches seek to improve point
estimates and confidence intervals by modeling the pattern of missing
data. But our focus is on cases for which all variables are missing—the
cases are purely hypothetical. And clearly such hypothetical data can-
not alter estimates and inferences since they contain no information.
Ultimately, our indices complement the use of other missing data pro-
cedures, as we can apply our indices to quantify robustness after using
other missing data procedures to improve estimation.

9.5. Comparison with Econometric Forecasting

Our characterization of broad external validity corresponds with Heck-
man (2005) and the emphasis by Manski (1995, chap. 1) on the impor-
tance of forecasting effects of new treatments or in new populations.
Drawing on Marschak (1953), Heckman emphasizes that econometric
analyses allow forecasting of results better than the Rubin (1974)/Hol-
land (1986) causal model (which is based on matching or randomized
experiments but applies to the general linear model) because the econo-
metric approach takes into account how and why members of different
populations might choose different treatments. Thus effects in a new
population are generalized from evidence in the sample most represen-
tative of that population, thereby better accounting for the likely choices
made by members of the population as well as the resulting treatment
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INDICES OF ROBUSTNESS FOR SAMPLE REPRESENTATION 377

effects. In this light, our indices, quantified in terms of the general lin-
ear model, extend the conceptualization of the Rubin/Holland causal
model toward a forecasting function because they allow policymakers
and researchers to consider how different a population must be from
the population studied such that the inferences from the observed data
are invalid for forecasting to that population.

10. DISCUSSION

In the behavioral and social sciences, we can be certain of external va-
lidity only when observations are randomly sampled or when data are
missing completely at random (Little and Rubin 1987). But social sci-
entists rarely analyze perfectly random samples (e.g., without attrition).
Correspondingly, critics in the social sciences may challenge the gener-
ality of inferences whenever there is uncertainty as to how representative
a sample is of some target population.

Of course, the first response to such concerns should be to include
all relevant subpopulations in a sample and compare observed relation-
ships, testing for interaction effects (Cronbach and Snow 1977). Where
interaction effects are detected, different estimates of the effects in each
subpopulation would be reported. In our example, Finn and Achilles
(1990) followed this procedure, testing for interactions of class size with
location of the school, grade, and predominant race in the school (and
Nye et al. [2002] tested for interactions by prior achievement). These
basic methods may be extended by more elaborate techniques such as
the exploration of treatment effects by strata of propensity scores (e.g.,
Rosenbaum and Rubin 1983; Morgan 2001).

But sometimes it is not possible to obtain data for all relevant
subpopulations. For example, the Tennessee class size study did not
report results based on per pupil expenditures and teacher salaries. Nor
were there funds or political motivation to include schools from other
states, nor did the research span over decades to the current date.

Furthermore, even inferences made from some subsamples could
be challenged. For example, even inferences made from the Tennessee
study for minorities may not apply to minorities across Tennessee in the
1980s or to minorities in other states or other time periods. Thus, even
when analyses are broken down by subsample there may still be the con-
cern that an inference from an observed subsample would differ from
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378 FRANK AND MIN

that of a perfectly representative subsample (Birnbaum and Mellers
1989; Cronbach and Snow 1977; Greenland 2000). In the extreme, ac-
cepting inference only if there are no interactions can lead to an infinite
reduction to effects for single units, which requires the impossible coun-
terfactual data (Holland 1986).

To inform inevitable debates regarding the external validity of an
inference, we have developed our indices to quantify how much of a de-
parture from a perfectly representative sample is required to invalidate
an inference. Regarding the inference from the Tennessee class size study
that small classes improve achievement, the index of external validity for
run

xy = 0 [IEVR(π , run
xy = 0)] indicated that 64 percent or more of the vol-

unteer schools would have to have been replaced with a sample for which
run

xy = ρun
xy = 0 to invalidate the inference. Note that the IEVR(π , run

xy = 0)
of 64 percent can be compared with Finn and Achilles’ (1990:559) sam-
pling percentage of about 33 percent, indicating that if the nil hypothesis
holds for the unobserved schools, the inference from the observed data
would be invalid.

As a complement to the IEVR(π , run
xy = 0), the IEVR(π = .5, run

xy)
indicated that if half the sample were replaced, run

xy would have to have
been less than −.08 to invalidate the inference from the observed data.
As a basis of comparison, the estimated effects of small classes were
uniformly positive across categories of urbanacity (Finn and Achilles
1991, table 3), levels of prior achievement (Nye et al. 2002, table 1),
and samples with different attrition patterns (Hanushek 1999, table 5).
Thus the requirement that small classes would have to have a negative
effect in the unobserved population to invalidate the inference is extreme
when compared to the range of estimated effects. Furthermore, the un-
observed estimate of run

xy = − .08 would have to be significantly different
statistically from the observed estimated of rob

xy = .296 to invalidate the
inference, suggesting that the inference is robust in an absolute sense
defined by statistical inference; either the overall inference would not
change if half the cases were replaced, or the inference would change
only if run

xy were significantly different from rob
xy, implying that the original

inference applies at least to a discernible subpopulation.15

15Solving (4) for r un
xy : r un

xy <
r#−(1−π )rob

xy
π

can also be used to assess the ro-
bustness of an inference with respect to bias induced by attrition. For example, if
there were 20 percent attrition in the Tennessee class size study, run

xy would have to
be less than −.70 for the inference based on the observed data to be invalid.
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INDICES OF ROBUSTNESS FOR SAMPLE REPRESENTATION 379

Our indices can be interpreted either in a narrow or broad sense
of external validity. In the narrowest sense, we may consider general-
izing Finn and Achilles’ (1990) results to elementary schools in Ten-
nessee in the mid-1980s, drawing on the high surface similarity in terms
of time and place and some background characteristics between those
schools that did and did not volunteer for the Tennessee class size study.
Similarly, it may be relatively straightforward to rule out many likely
factors differentiating volunteer from nonvolunteer populations that
would render 64 percent of the observed data as nonrepresentative.
On the other hand, it may well be that less than 64 percent of the
sample would contribute to a sample that is representative of schools
in different places and at different times (e.g., California in the mid-
1990s).

Because the indices are developed with respect to the general lin-
ear model, they can be applied to other analyses that ultimately employ
the general linear model or variations of it. For example, we could apply
the indices to analyses based on propensity scores used to focus on spe-
cific treatment effects but where there still may be concerns regarding
external validity (e.g., Morgan 2001). Similarly we can quantify the ro-
bustness of inferences from meta-analyses with respect to generalizing
to other populations or into the future (Worm et al. 2006).

In contrast to the classic approach to experimental design (e.g.,
Fisher 1924), our logic is decidedly post hoc, imploring researchers to
consider how results might have been affected by an alternative compo-
sition of the sample. Furthermore, our analysis is in terms of common
procedures associated with the general linear model. This distinguishes
our approach from approaches based on nonparametric statistics (e.g.,
Rosenbaum 2002), nonlinear relationships (e.g., Manski 1990), or the
fail-safe n problem in meta-analysis (Rosenthal 1979), while the hy-
pothetical nature of our framework distinguishes our approach from
procedures that draw on observed characteristics of the missing cases
(e.g., cross-validation studies and multiple imputation).

10.1. Quantitative Thresholds and Decision-Making

Recognizing that statistical significance is not the only criterion for
making a causal inference, we developed our indices for any quantitative
threshold. Most generally, the indices reflect the uncertainty of decision
making. That is, representing the robustness of an inference recognizes
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380 FRANK AND MIN

that although a threshold was exceeded, the decision could be altered
for a sample of different composition.

Although we have recognized alternative thresholds, some may
still be uneasy with using statistical inference as one basis for causal in-
ference (e.g., Hunter 1997). In making a causal inference, we should rely
on effect sizes, confidence intervals, causal mechanisms, and the nuances
of implementation (Wilkinson et al. 1999). But it would also be unusual
for an empirical relationship that was not statistically significant to be
relied upon as a basis of policy change. Consider the recommendation
of Wainer and Robinson (2003) to use a “two-step procedure where first
the likelihood of an effect (small p value) is established before discussing
how impressive it is” (p. 25). Therefore statistical significance is treated
as an essential condition for causal inference, and thus it is reasonable
to define thresholds for robustness in terms of statistical inference.

Ultimately, what are the key objections to moving from statistical
analysis to causal inference? First, the observed relationship may be spu-
rious because there may be an omitted confounding variable (correlation
does not equal causation [Holland 1986]). This concern is quantified via
Rosenbaum’s (2002) index of selection bias and Frank’s (2000) index of
robustness to the impact of a confounding variable. Or the effect may
vary across contexts (Gilbert and Mosteller 1972; Winship and Sobel
2004). This is the focus of the indices developed here. Drawing on Hol-
land (1986), we see that the combination of existing indices for spurious
relationships (Rosenbaum 2002; Frank 2000) and the indices presented
here for representation of a sample quantify the primary concerns in
moving from statistical analysis to causal inference. If the key statistical
thresholds are unlikely to be exceeded when confounding variables are
included or alternative samples are used, then the statistical, and thus
the causal, inferences are robust.

10.2. Limitations and Extensions

We wish to emphasize the post hoc nature of our interpretation of the
indices. The indices quantify what would have happened if the sample
had been more representative of a target population. This informs the
question of construct validity—of evidence of an underlying mechanism
that operates across contexts (Cook and Campbell 1979). We recognize
that the indices are less informative for the adaptation of treatments to
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INDICES OF ROBUSTNESS FOR SAMPLE REPRESENTATION 381

alternative contexts. For example, though small classes appeared to have
some small effects in California, implementation of small classes resulted
in the hiring of higher percentages of unqualified teachers, especially for
students who were most disadvantaged (Bohrnstedt and Stecher 2002;
Hanushek 1999). Thus issues of implementation must be considered
even if causal inference is robust.

We note that our indices are limited to applications of the general
linear model. Using this model has the advantage that we can calculate
how unobserved quantities affect parameter estimates and statistical in-
ference in closed form. But we anticipate great value in extending the
indices to a broader set of models. For example, Harding (2003) ex-
tended Frank’s index for confounding variables to logistic regression.
Furthermore, because we developed our indices by drawing on the func-
tional relationship between a t-ratio and a correlation coefficient (as in
equation [4]), we could theoretically extend the indices to any statistical
procedure that reports t-ratios—for example, to multilevel models that
correct standard errors and estimates for the nesting of observations
(Raudenbush and Bryk 2002; Seltzer, Kim, and Frank 2006).

11. CONCLUSION

In spite of the value of robustness indices, it is worth emphasizing the
robustness indices do not sustain new causal inferences. In the example,
the original inference that small classes improve achievement was not
modified. Nor do the robustness indices replace the need for improved
research designs or better theories. If we accept that causal inferences are
to be debated (Abbott 1998), what robustness indices do is quantify the
terms of the debate. Therefore instead of “abandoning the use of causal
language” (Sobel 1998: 345, see also Sobel 1996:p 355) we quantify the
robustness of an inference and interpret it relative to the design of a
study.

Metaphorically, assumptions support the bridge between statis-
tical and causal inference (Cornfield and Tukey 1956). And robustness
indices characterize the strength of that bridge. Large values, defined
relative to the study design and theoretical understandings of the phe-
nomenon, support a causal inference. Small values suggest trepidation
for even the smallest of inferences. Ultimately, no causal inference is
certain, but robustness indices help us choose which bridges to venture
to cross.
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382 FRANK AND MIN

APPENDIX A: A QUICK GUIDE FOR CALCULATING
ROBUSTNESS INDICES FOR SAMPLE REPRESENTATION

Known quantities:

rob
xy: the correlation between the treatment (x) and the outcome (y) in

the observed sample (.296 in the example);
nob: the observed sample size (331 in the example);
r# : the threshold for a sample correlation for making an inference

(r# for statistical significance in the example = .107, as obtained
from equation [6] in the main text);

tcritical: the critical value of a t-distribution used for inference (1.96 in
the example), and q is the number of parameters estimated
(including the intercept, the parameter for
x and parameters for any other covariates, = 2 in the example).

Unknown quantities necessary to construct the ideal sample:

run
xy: the correlation between the treatment (x) and the outcome (y) in

the unobserved sample;
π : the proportion of the ideal sample that is constituted by the unob-

served cases.

The general expression for the relationship of interest in an ideal
sample is (equation [3] in the main text):

r ideal
xy = (1 − π )rob

xy + πrun
xy .

To determine a robustness index, set rideal
xy ≤ r#, set one of the unknown

quantities to a desired value, and solve for the other unknown quantity.

For Neutralization by Replacement (Replacing a Portion of a Sample)

Q. Assuming there is no effect in the unobserved sample (run
xy = 0), what

proportion of the original sample (π) must be replaced to invalidate the
inference that small classes have an effect on achievement?

The index of external validity for run
xy = 0 and replacement, or IEVR(π ,

run
xy = 0) = r#/rob

xy ( = .64 in the example).
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INDICES OF ROBUSTNESS FOR SAMPLE REPRESENTATION 383

A. Assuming run
xy = 0, replace at least 64 percent of the sample

(π > .64) to invalidate the inference that small classes have an effect on
achievement.

Q. Assuming half the sample were replaced (π = .5), what must be
the effect in the unobserved sample (run

xy) to invalidate the inference that
small classes have an effect on achievement?

The index of external validity for π = .5 and replacement, or IEVR
(π = .5, run

xy) = 2r#− rob
xy ( = −.08 in the example).

A. If half the sample were replaced, run
xy must be less than or equal

to −.08 to invalidate the inference that small classes have an effect on
achievement.

For Neutralization by Contamination (Adding to a Sample)

The index of external validity for run
xy = 0 and contamination, or IEVC(π ,

run
xy = 0), is the same as IEVR(π , run

xy = 0), but it is based on π = nun∗/(nob

+ nun∗), where

nun∗ =
nob

[
nob

(
rob

xy

)2 − 2t2
critical + rob

xy

√(
nob

)2(rob
xy

)2 + 4t2
critical

(
t2
critical − q

)]
2t2

critical

.

In the example, nun∗ = 2153, which would account for 87 percent of the
cases in the ideal sample.

The index of external validity for π = .5 and contamination, or
IEVC(π = .5, run

xy) = 2r## − rob
xy, where

r## = tcritical√
(2nob − q) + t2

critical

.

In the example, IEVC(π = .5, run
xy) = − .14, indicating run

xy would
have to be less than or equal to −.14 to invalidate the inference if the
sample size were doubled by adding cases from the potentially unob-
served population.
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384 FRANK AND MIN

Whether the Difference Between rob
xy and run

xy Would Be Statistically
Significant

The index of external validity beyond interaction (IEVBI) is equal to

r# − e2m(1 + r#) − 1 −
√√√√4(e2m − 1)(π − 1)(e2mπ + r# + e2mr# − π )

+(1 − r# + e2m(1 + r#))2

2(e2m − 1)(π − 1)
,

where m = 1.96

√
1

(1−π )(nob−q)
+ 1

π (nob−q)
.

In the example, assuming π = .50, the IEVBI = .215 which is less
than rob

xy of .296. This indicates that run
xy would have to be significantly

different statistically from rob
xy to invalidate the inference.

See http://www.msu.edu/∼kenfrank/research.htm#causal for
a spreadsheet that calculates some of these indices.

APPENDIX B: FULL EXPRESSION FOR rxy

We develop here an expression for rxy that does not assume that the
means and variances of the potentially unobserved population equal
those of the potentially observed population. First, we calculate a co-
variance constructed from two samples with different means and vari-
ances. Symbols are defined as follows.

1. n = sample size
rxy = correlation
xi = X component
yi = Y component
x̄ = mean of X
ȳ = mean of Y
sxy = covariance of X and Y
sx = standard deviation of X
sy = standard deviation of Y for the representative sample that is a com-
bination of potentially observed and potentially unobserved samples
2. Corresponding statistics for the potentially observed sample are nob,
rob

xy, xob
i , yob

i , x̄ob, ȳob, sob
xy, sob

x , and sob
y .
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INDICES OF ROBUSTNESS FOR SAMPLE REPRESENTATION 385

3. Corresponding statistics for the potentially unobserved sample are
nun, run

xy, xun
i , yun

i , x̄un, ȳun, sun
xy, sun

x , and sun
y .

To begin,

sxy = 1
n

n∑
i=1

(
xi − x̄

)(
yi − ȳ

)

= 1
n

[
nob∑
i=1

(
xob

i − x̄
)(

yob
i − ȳ

) +
nun∑
i=1

(
xun

i − x̄
)(

yun
i − ȳ

)]
.

(B-1)

Define π = nun

n and (1 − π ) = nob

n . Allowing for different means between
the observed and unobserved samples implies

∑nob

i=1

(
xob

i − x̄
)(

yob
i − ȳ

)
= ∑nob

i=1

[(
xob

i − (1 − π )x̄ob − π x̄un
)(

yob
i − (1 − π )ȳob − π ȳun

)]
.

(B-2)

Using the identity (A-B-C)(D-E-F) = (A-B)(D-E)-F(A-B)-C(D-E-F),
the right side of the above equation equals:

nob∑
i=1

[(
xob

i − (1 − π )x̄ob
)
(yob

i − (1 − π )ȳob)
]

+
nob∑
i=1

{
(−π ȳun

[
xob

i − (1 − π )x̄ob
] − π x̄un

[
yob

i − (1 − π )ȳob − π ȳun
]}

.

(B-3)

The above equation can then be decomposed into W ob + Qob, where

Wob = ∑nob

i=1

[(
xob

i − (1 − π )x̄ob
)(

yob
i − (1 − π )ȳob

)]
and

Qob =∑nob

i=1

{−π ȳun
[
xob

i − (1 − π )x̄ob
] − π x̄un

[
yob

i − (1 − π )ȳob − π ȳun
]}

.

(B-4)
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386 FRANK AND MIN

Now, the observed sample covariance can itself be decomposed:

nobsob
xy = ∑nob

i=1

(
xob

i − x̄ob
)(

yob
i − ȳob

)
= ∑nob

i=1

[
xob

i − (1 − π )x̄ob − π x̄ob
]

× [
yob

i − (1 − π )yob
i − πyob

i

]
. (B-5)

Again using the identity (A-B-C)(D-E-F) = (A-B)(D-E)-F(A-B)-C(D-
E-F), the right side of the above equation equals

∑nob

i=1

{[
xob

i − (1 − π )x̄ob
] [

yob
i − (1 − π )ȳob

]}
+ ∑nob

i=1

{
−π ȳob

[
xob

i − (1 − π )x̄ob
] − π x̄ob

[
yob

i − (1 − π )ȳob − π ȳob
]}

.

(B-6)

The above equation equals W ob + Zob, where

Zob =∑nob

i=1

{−π ȳob
[
xob

i − (1 − π )x̄ob
] − π x̄ob

[
yob

i − (1 − π )ȳob − π ȳob
]}

.

(B-7)

Substituting nobsob
xy − Zob for W ob above,

nob∑
i=1

(
xob

i − x̄
)(

yob
i − ȳ

) = nobsob
xy − Zob + Qob. (B-8)

Similarly,

nmi∑
i=1

(
xun

i − x̄
)(

yun
i − ȳ

) = nunsun
xy − Zun + Qun, (B-9)
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INDICES OF ROBUSTNESS FOR SAMPLE REPRESENTATION 387

where

Qun =
nun∑
i=1

{−(1 − π )ȳob
(
xun

i − π x̄un
)

−(1 − π )x̄ob
[
yun

i − (1 − π )ȳob − π ȳun
]}

and

Zun = ∑nun

i=1

{−(1 − π )ȳun
(
xob

i − π
)
x̄ob

)
−(1 − π )x̄un

[
yun

i − (1 − π )ȳun − π ȳun
]}

.
(B-10)

Thus

sxy = 1
n

n∑
i=1

(xi − x̄)(yi − ȳ)

= 1
n

(
nobsob

xy − Zob + Qob + nunsun
xy − Zun + Qun). (B-11)

Now, − (Zob + Zun) + (Qob + Qun)
= n(1 − π )π (x̄ob ȳob + x̄un ȳun − x̄ob ȳun − x̄un ȳob).

Therefore, sxy = (1 − π )sob
xy + πsun

xy + (1 − π )π (x̄ob − x̄un)(ȳob − ȳun).

By similar calculations, s2
x = (1 − π )

(
sob

x

)2 + π
(
sun

x

)2

+(1 − π )π (x̄ob − x̄un)2

and s2
y = (1 − π )

(
sob

y

)2 + π
(
sun

y

)2 + (1 − π )π
(
ȳob − ȳun

)2
.

(B-12)

The overall expression for the combined correlation (expressed in terms
of observed and unobserved correlations) is then

rxy = (1 − π )rob
xysob

x sob
y + πrun

xy sun
x sun

y + (1 − π )π (x̄ob − x̄un)(ȳob − ȳun)√√√√ [(1 − π )
(
sob

x

)2 + π
(
sun

x

)2 + (1 − π )π (x̄ob − x̄un)2]

×[(1 − π )(sob
y )2 + π (sun

y )2 + (1 − π )π (ȳob − ȳun)2]

.

(B-13)
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388 FRANK AND MIN

If sx = sob
x = sun

x and sy = sob
y = sun

y then

rxy = sxsy

[
(1 − π )rob

xy + πrun
xy

] + (1 − π )π (x̄ob − x̄un)(ȳob − ȳun)√[
(1 − π )π (x̄ob − x̄un)2 + s2

x

][
(1 − π )π (ȳob − ȳun)2 + s2

y

] .

(B-14)

If x̄ob = x̄un and ȳob = ȳun then

rxy =
(1 − π )rob

xysob
x sob

y + πrun
xy sun

x sun
y√√√√{(

sun
x

)2 + (1 − π )
[(

sob
x

)2 − (
sun

x

)2]}
×{(

sun
y )2 + (1 − π )

[
(sob

y

)2 − (
sun

y )2
)]}

.

(B-15)

If both means and variances are equal, we get rxy = (1 − π )rob
xy + πrun

xy
as in equation (3) in the main text of this paper.
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