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We contribute to debate about causal inferences in educational research in two ways. First, we 
quantify how much bias there must be in an estimate to invalidate an inference. Second, we utilize 
Rubin’s causal model to interpret the bias necessary to invalidate an inference in terms of sample 
replacement. We apply our analysis to an inference of a positive effect of Open Court Curriculum on 
reading achievement from a randomized experiment, and an inference of a negative effect of kinder-
garten retention on reading achievement from an observational study. We consider details of our 
framework, and then discuss how our approach informs judgment of inference relative to study 
design. We conclude with implications for scientific discourse.
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Introduction

Education is fundamentally a pragmatic 
enterprise (e.g., National Research Council, 
2002; Raudenbush, 2005), with the ultimate 
goal of educational research to inform choices 
about curricula, pedagogy, practices, or school 
organization (e.g., Bulterman-Bos, 2008; Cook, 
2002). To achieve that goal, educational 
researchers must pay careful attention to the 
basis for making causal inferences (e.g., 
Schneider, Carnoy, Kilpatrick, Schmidt, & 
Shavelson, 2007). In Holland’s (1986) lan-
guage, if educational researchers do not infer 

the correct causes of effects, then policy manip-
ulations based on their research will not produce 
the intended results.

However, study results can be ambiguous. As 
a result, debate about the general bases for 
causal inferences in the social sciences dates 
back to the 1900s (e.g., Becker, 1967; Rubin, 
1974; Thorndike & Woodworth, 1901; see 
Abbott, 1998 or Oakley, 1998, for reviews), 
with some heated as in the Cronbach versus 
Campbell exchanges of the 1980s (e.g., Cook & 
Campbell, 1979; Cronbach, 1982). Debates 
have also emerged about specific causal infer-
ences. For example, analyzing data from the 
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federal longitudinal database High School and 
Beyond, Coleman, Hoffer, and Kilgore (1982) 
estimated that students attending Catholic 
schools had higher achievement than similar 
students attending public schools leading to an 
inference that Catholic schools educate students 
better than public schools (Chubb & Moe, 1990; 
Coleman et al., 1982). Controversy ensued over 
the internal validity of the results: Despite con-
trolling for background characteristics, can one 
ever be sure that the Catholic and public stu-
dents being compared were really similar? 
Indeed, in a critique of the Coleman findings, 
Alexander and Pallas (1983) noted that

the single greatest burden of school effects research 
is to distinguish convincingly between outcome 
differences that reflect simply differences in the 
kinds of students who attend various schools from 
differences that are attributable to something about 
the schools themselves. (p. 170)

Given concerns about inferences from obser-
vational studies, several institutions, such as the 
What Works Clearinghouse (Eisenhart & 
Towne, 2008) and the U.S. Department of 
Education’s National Center for Education 
Research (NCER), have drawn on the medical 
model to call for a sound, scientifically rigorous 
basis for making causal inferences in educa-
tional research. In particular, these institutions 
have emphasized the importance of random 
assignment to treatment conditions for making 
causal inferences; if participants are randomly 
assigned to treatments, then any preexisting dif-
ferences between treatment groups will be elim-
inated in the long run (Fisher & Sir, 1930/1970). 
Prominent examples of randomized experi-
ments in educational research include evalua-
tions of Sesame Street (Bogatz & Ball, 1972), 
the Perry Preschool Project (Schweinhart, 
Barnes, & Weikart, 1993), small classes (Finn & 
Achilles, 1990), and Comer’s School 
Development Program (see Cook, 2003, p. 123, 
for a review).

Despite their many virtues, even perfectly 
executed randomized experiments do not pre-
empt debate about causal inferences. This is 
because it is rare when an educational 
researcher can randomly sample participants 
from the desired target population and then 
also randomly assign participants to meaningful 

treatment conditions (Cook, 2003). For exam-
ple, imagine a researcher randomly sampling 
students and then telling some they had been 
randomly assigned a treatment, such as to attend 
a Catholic school. Consequently, randomized 
experiments are open to the critique that their 
external validity is limited by the representa-
tiveness of the sample on which the experiment 
was conducted. As a result most if not all educa-
tional research leaves the door open to debate 
because of a nonrandom sample and/or nonran-
dom assignment to treatments.

In this article, we put forth a framework that 
informs debate about causal inferences in edu-
cational research. As a foundation, we draw on 
Rubin’s causal model (RCM; Rubin, 1974) to 
express concerns about bias in terms of charac-
teristics of unobserved data. In particular, we 
use RCM to characterize how one could invali-
date inferences by replacing observed cases 
with unobserved cases in which there was no 
treatment effect. The underlying intuition is 
straightforward: How much would a study 
sample have to change in order to change the 
inference? We answer this question using a 
framework that quantifies sources of bias rooted 
in either restricted sampling or nonrandom 
treatment assignment.

Equally important, our framework enables 
researchers to identify a “switch point” (Behn & 
Vaupel, 1982) where the bias is large enough to 
undo one’s belief about an effect (e.g., from 
inferring an effect to inferring no effect). Using 
the switching point, we transform external 
validity concerns such as “I don’t believe the 
study applies to my population of interest” to 
questions such as “How much bias must there 
have been in the sampling process to make the 
inference invalid for a population that includes 
my population of interest?” Similarly with 
respect to internal validity, we transform state-
ments such as “But the inference of a treatment 
effect might not be valid because of preexisting 
differences between the treatment groups” to 
questions such as “How much bias must there 
have been due to uncontrolled preexisting dif-
ferences to make the inference invalid?”

Importantly, our analysis contributes to a 
process and discourse of inference for particular 
studies. Quantifying a switch point and inter-
preting in terms of sources of bias is a crucial 
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step. Considered together with the capacity of 
the study design to reduce or eliminate bias, our 
framework can help researchers better evaluate 
whether bias is large enough to invalidate the 
inference of a study.

In the next section, ‘The Robustness of an 
Inference: Comparing Evidence Against a 
Threshold,’ we elaborate on the idea of a “switch 
point” for an inference, and provide a more for-
mal definition of the robustness of an inference. In 
the section ‘RCM and Sources of Bias,’ using 
RCM (Rubin, 1974), we develop our framework 
in terms of missing data for interpreting the bias 
necessary to invalidate an inference. In the section 
‘Examples,’ we apply the framework to Borman, 
Dowling, and Schneck’s (2008) inference of a 
positive effect of the Open Court Curriculum 
from a randomized experiment on a volunteer 
population, and to Hong and Raudenbush’s (2005) 
inference of a negative effect of kindergarten 
retention from a random sample in an observa-
tional study. In the discussion, we consider choices 
for thresholds and then discuss how our approach 
informs judgment of inference relative to study 
design, compare with other approaches to quanti-
fying discourse about inferences, and characterize 
other sources of bias. We conclude with implica-
tions for scientific discourse.

The Robustness of an Inference: Comparing 
Evidence Against a Threshold

The starting point for our analysis is when 
one makes an inference about the effect of a 
policy because empirical evidence exceeds a 
given threshold. The threshold defines the point 
at which evidence from a study would make one 
indifferent to the policy choices. Given the 
pragmatic emphasis of educational research, the 
threshold could be the effect size where the ben-
efits of a policy intervention outweigh its costs 
for either an individual or community. For 
example, a policymaker might have a specific 
threshold at which the evidence is strong enough 
in favor of a curriculum to outweigh the costs of 
introducing that curriculum into her school. Or 
as is commonly the case in academic research, 
the threshold can be defined by statistical sig-
nificance—the threshold is an estimate just large 
enough to be interpreted as unlikely to occur by 
chance alone (for a given a null hypothesis).

Regardless of the specific threshold, one 
can compare an estimate with a threshold to 

represent how much bias there must be to switch 
the inference. The more the estimate exceeds the 
threshold, the more robust the inference with 
respect to that threshold. Therefore, we refer to 
the evaluation of the estimate against the thresh-
old as the “robustness” of the inference.

Consider Figure 1, in which the treatment 
effects from Hypothetical Studies A (estimated 
effect of six) and B (estimated effect of eight) 
each exceed the threshold of four. If the thresh-
old of four represents an effect large enough to 
infer that the benefits of a study outweigh its 
costs, then in both cases, one would draw the 
inference that the effect of the treatment was 
strong enough to implement. However, the 
estimated effect from Study B exceeds the 
threshold by more than does the estimate from 
Study A. Assuming that the estimates were 
obtained with similar levels of control for 
selection bias in the design of the study and 
similar levels of precision, the inference from 
Study B is more robust than that from Study A 
because a greater proportion of the estimate 
from Study B must be due to bias to invalidate 
the inference.

The relative robustness of an inference can 
be explicitly quantified in terms of the differ-
ence between an estimate and a threshold, 
expressed relative to the size of the estimate:

(estimate − threshold) / estimate =  
1 − threshold / estimate.

Equation (1) simply implies that the robust-
ness of an inference is a function of the percent-
age of the estimate that exceeds the threshold. 
For Study A, (estimate − threshold) / estimate = 
(6 − 4) / 6 = 1 / 3, or 33%. Thus, 33% of the 
estimate from Study A would have to be due to 

FIGURE 1. Estimated treatment effects in hypo-
thetical Studies A and B relative to a threshold for 
inference.
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bias to invalidate the inference. In contrast, 
50% of the estimate for Study B would have to 
be due to bias to invalidate the inference (8 − 4) / 
8 = 50%.

More formally, define a population effect as 
δ, the estimated effect as δ̂, and the threshold for 
making an inference as δ#. For example, to 
account for sampling error, δ# might be the 
threshold for statistical significance (δ# is asso-
ciated with a p value of exactly .05). An infer-
ence about a positive effect is invalid if:

 δ̂ > δ# > δ.  (2)

That is, an inference is invalid if the estimate 
is greater than the threshold while the popula-
tion value is less than the threshold (a symmet-
ric argument applies for negative effects). For 
example, the inference from hypothetical Study 
A is invalid if 6 > 4 > δ.

The expression in Equation (2) can be used 
to quantify how much bias there must be in an 
estimate to invalidate an inference. Subtracting 
δ̂  from each side in Equation (2) and multiply-
ing by −1 yields:

δ̂ − δ > δ̂ − δ# > 0.

Defining bias as β = δ̂ − δ, Equation (2) implies 
an estimate is invalid if and only if:

 β > δ̂ − δ#. (3)

An inference is invalid if bias accounts for 
more than the difference between the estimate 
and the threshold.

To express Equation (3) as a proportion of 
the original estimate, divide the right-hand side 
by δ̂:

 δ̂ − δ# / δ̂ = 1 − δ#/ δ̂. (4)

This is equivalent to Equation (1); the pro-
portion of bias necessary to invalidate the infer-
ence is equivalent to the graphical comparison 
of an estimate to a threshold for inference. If an 
unbiased test statistic is used and assuming no 
random sampling error, Equations (3) and (4) 
express how much bias due to the design com-
ponents there must be to invalidate an inference 
based on δ̂. The challenge then is to interpret the 

expressions in Equations (3) and (4) in a frame-
work that can be applied to observational stud-
ies or randomized experiments. For this, we turn 
to RCM in the next section.

RCM and Sources of Bias
Potential Outcomes

RCM is best understood through the coun-
terfactual sequence: I had a headache, I took an 
aspirin, and the headache went away. Is it 
because I took the aspirin? One will never 
know because we do not know what I would 
have experienced if I had not taken the aspirin. 
One of the potential outcomes I could have 
experienced by either taking or not taking an 
aspirin will be counter to fact, termed the coun-
terfactual within RCM (for a history and review 
of RCM, see Holland, 1986; or Morgan & 
Winship, 2007, chapter 2). In one of the exam-
ples in this study, it is impossible to observe a 
single student who is simultaneously retained 
in kindergarten and promoted into the first 
grade.

Formally expressing the counterfactual in 
terms of potential outcomes shows how RCM 
can be applied to represent bias from nonran-
dom assignment to treatments or nonrandom 
sampling. Define the potential outcome Yi

t as 
the value on the dependent variable (e.g., read-
ing achievement) that would be observed if unit 
i were exposed to the treatment (e.g., being 
retained in kindergarten); and Yi

c as the value on 
the dependent variable that would be observed 
if unit i were in the control condition and there-
fore not exposed to the treatment (e.g., being 
promoted to the first grade).1 If SUTVA (Rubin, 
1986, 1990) holds—that there are no spillover 
effects of treatments from one unit to another—
then the causal mechanisms are independent 
across units, and the effect of the treatment on a 
single unit can be defined as

 δi = Yi
t − Yi

c. (5)

The problems of bias due to nonrandom 
assignment to treatment are addressed in RCM 
by defining causality for a single unit—the unit 
assigned to the treatment is identical to the unit 
assigned to the control. Similarly, there is no 
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concern about sampling bias because the model 
refers only to the single unit i.

Of course, RCM does not eliminate the prob-
lems of bias due to nonrandom assignment to 
treatments or nonrandom sampling. Instead, it 
recasts these sources of bias in terms of missing 
data (Holland, 1986), because for each unit, one 
potential outcome is missing. We use this fea-
ture to describe characteristics of missing data 
necessary to invalidate an inference.

Application to Nonrandom Assignment to 
Treatment

Consider a study in which the units were 
randomly sampled but were not randomly 
assigned to treatments (e.g., an observational 
study of the effects of kindergarten retention on 
achievement). In this case, we would focus on 
interpreting the bias necessary to invalidate an 
inference due to nonrandom assignment to treat-
ment, a component of internal validity (Cook & 
Campbell, 1979). Using notation similar to that 
of Morgan and Winship (2007), let X = t if a unit 
received the treatment and X = c if a unit 
received the control. Yt | X = t is then the value 
of the outcome Y for a unit exposed to the treat-
ment, and Yc | X = t is the counterfactual value 
of Y under the control condition for a unit that 
was exposed to the treatment. For example, 
Y retained | X = retained is the observed level of 
achievement for a student who was retained in 
kindergarten, while Y promoted | X = retained is the 
unobserved level of achievement for the same 
student if he had been promoted.

Using this notation, and defining bias as β = 
E[δ̂]− E[δ], in online Appendix A, we show the 
bias due to nonrandom assignment to treat-
ments, βa, is:

βa = πt{ E[Yc | X = t] − E[Yc | X = c]}+ 
(1 − πt){E[Yt | X = t] − E[Yt | X = c]}.

In words, the term E[Yc | X = t] − E[Yc | X = c] 
represents bias introduced by comparing mem-
bers of the treatment group with members of the 
observed control (Yc | X = c) instead of their 
counterfactual: members of the treatment 
group if they had received the control  
(Yc | X = t). Similarly, E[Yt | X = t] − E[Yt | X = c] 
represents bias introduced by comparing members 

of the control with members of the observed 
treatment (Yt | X = t) instead of their counterfac-
tual: members of the control if they had received 
the treatment (Yt | X = c). The bias attributed to 
the incorrect comparison for the treatment group 
is weighted by the proportion in the treatment 
group, πt; and the bias attributed to the incorrect 
comparison for the control group is weighted by 
1 − πt.

Application to a Nonrandom Sample

Now consider a study in which the units were 
randomly assigned to treatments but were not 
randomly sampled from the population to which 
one would like to generalize. In this case, the 
target population consists of both those directly 
represented by the sample as well as those not 
directly represented by the sample—one might 
be concerned with statements about general 
causes across populations, known as external 
validity (Cook & Campbell, 1979, p. 39). As an 
example in this article, one might seek to make 
an inference about the effect of the Open Court 
curriculum beyond the population of schools 
that volunteered for a study of Open Court (e.g., 
Borman et al., 2008).

To quantify robustness with respect to exter-
nal validity, we adapt RCM to focus on bias due 
to nonrandom sampling. Instead of the unob-
served data defined by the counterfactual, con-
sider a target population as comprised of two 
groups, one that has the potential to be observed 
in a sample, p, and one does not have the poten-
tial to be sampled but is of interest, p′. For 
example, consider population p to consist of 
schools that volunteered for a study of the Open 
Court curriculum, and population p′ to consist 
of schools that did not volunteer for the study. 
Although the study sample can only come from 
those schools that volunteered for the study, one 
might seek to generalize to the broader popula-
tion of schools including p′ as well as p.

To formally adapt RCM to external validity, 
decompose the combined population treatment 
effect, δ, into two components: δ

p
, the treatment 

effect for the population potentially sampled, and 
δ

p′
, the treatment effect for the population not 

potentially sampled (Cronbach, 1982; Fisher & 
Sir, 1930/1970; Frank & Min, 2007). Assuming 
the proportion of units receiving the treatment is 

(6)
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the same in p and p´, an expression for an unbi-
ased treatment estimate across both populations is

 δ = πp δ
p
 +(1− πp) δ

p′
, (7)

where πp represents the proportion from p in the 
sample representative of p and p′.

We can use Equation (7) to develop expres-
sions for bias in estimated treatment effects due 
to a nonrandom sample. Let Z = p if a unit is from 
p, and Z = p′ if a unit is from p′. Combining this 
notation with our earlier notation (e.g., Yt | Z = p 
represents the treatment outcome for a school in 
the population of schools that volunteered for the 
study), and defining bias due to nonrandom sam-
pling as βs, in online Appendix A we show:

βs = (1 − πp){(E[Yt | Z = p] − E[Yc | Z = p]) −  
(E[Yt | Z = p′] − E[Yc | Z = p′])}.

In words, the bias is due to an estimate based 
on 1 − πp units of p with effect E[Yt | Z = p] −  
E[Yc | Z = p] instead of units from p′ with effect 
E[Yt | Z = p′] − E[Yc | Z = p′]. Equations (7) and 
(8) show how RCM can be used to generate 
expressions for bias due to nonrandom sampling 
as well as nonrandom assignment to treatments.2

Limiting Condition: No Treatment Effect

 Equations (6) and (8) can be used to quantify 
the robustness of an inference by considering 
replacing observed data with hypothetical data. 
Interpreting bias in terms of replacement data 
expresses validity in terms of the exchangeabil-
ity of observed and unobserved cases. External 
validity concerns about bias due to a nonrandom 
sample can be cast in terms of the proportion of 
cases in the observable population p that are 
unexchangeable with the unobservable popula-
tion p´ in the sense that one must replace the 
proportion in p to make a causal inference that 
applies to p and p´. Similarly, internal validity 
concerns about bias due to nonrandom treatment 
assignment can be cast in terms of the proportion 
of the observed cases that are unexchangeable 
with the optimal counterfactual cases such that 
one must replace the proportion of observed 
cases to make a causal inference in the sample. 
Here we consider replacing cases under the lim-
iting condition of no treatment effect.

Nonrandom sampling. Bias due to nonrandom 
sampling in Equation (8) can be expressed by 
assuming the null hypothesis of zero effect 
holds in the replacement units as might be 
claimed by a skeptic of the inference (Frank & 
Min, 2007). In this case, E[Yt | Z = p´] =  
E[Yc | Z = p´] and substituting into Equation (8) 
yields:

βs = (1 − πp){E[Yt | Z = p] − E[Yc | Z = p]}  
= (1 − πp) δ̂.

Setting βs > δ̂ − δ# and solving Equation (9) 
for (1 − πp), the inference is invalid if:

(1 − πp) > 1 − δ# / δ̂.

Equation (10) is a particular example of the 
bias necessary to invalidate an inference shown 
in Equation (4), in this case in terms of bias 
due to nonrandom sampling associated with πp 
(this replicates the result in Frank & Min, 
2007).

Nonrandom assignment to treatments. We can 
use Equation (6) to isolate the conditions that 
could invalidate an inference due to bias from 
nonrandom assignment to treatment conditions. 
Following Morgan and Winship (2007, p. 46), 
Equation (6) can be rewritten as:

βa = {E[Yc | X = t] − E[Yc | X = c]}+  

(1 − pt){(E[Yt | X = t] − E[Yc | X = t]) − (E[Yt | X = c] − E[Yc | X = c])}.

Thus, bias is a function of expected differ-
ences at baseline, or in the absence of a treat-
ment E[Yc | X = t] − E[Yc | X = c]), and differen-
tial treatment effects for the treated and control 
(E[Yt | X = t] − E[Yc | X = t]) − (E[Yt | X = c] − 
E[Yc | X = c])= δt − δc.

Assuming δt − δc = 0 as in the limiting case 
when there is no treatment effect (δt = δc = 0) 
and setting βa > δ̂ −δ# implies an inference is 
invalid if:

    βa = (E[Yc | X = t] − E[Yc | X = c]) >  δ̂ − δ#.   (12)

Equation (12) indicates the bias necessary to 
invalidate the inference due to differences in the 
absence of treatment.

(8)

(9)

(10)

(11)
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To interpret Equation (12) in terms of sample 
replacement, note that bias due to the difference 
in expected values in the absence of treatment 
can be re-expressed in terms of the expected 
value of the differences in the absence of treat-
ment:

(E[Yc | X = t] − E[Yc | X = c]) > δ̂ − δ#

      ⇒ E[(Yc | X = t) − (Yc | X = c)] > δ̂ − δ#.     (13)

Now separate the sample into the proportion 
in which there is no bias (α), and the proportion 
in which there is bias (1 − α):

(α)(E[(Yc | X = t) − (Yc | X = c)] +  
(1 − α) E[(Yc | X = t) − (Yc | X = c)] > δ̂ − δ#.

Setting E[(Yc | X = t) − (Yc | X = c) = 0 for 
those cases in which there is no bias because 
the expected value of the counterfactuals equals 
the expected value of the observed controls, 
and E[(Yc | X = t) − (Yc | X = c) = δ̂ − δ = δ̂ for 
those cases in which the estimated effect is 
entirely due to bias (because δ = 0) yields:

                         1 − α > 1 − δ# / δ̂.                    (15)

From Equation (15), an inference would be 
invalid if (1 − δ# / δ̂) or more of the cases in 
which there was bias were replaced with coun-
terfactual data for which there was no treatment 
effect. Thus, Equation (15) is a particular exam-
ple of the bias necessary to invalidate an infer-
ence shown in Equation (4), in this case in terms 
of bias due to nonrandom assignment to treat-
ments, associated with 1 − α.

In the next section, we use our framework to 
quantify the robustness of inferences from 
empirical studies. For each study, we quantify 
the extent of bias necessary to invalidate the 
inference and interpret using our framework 
based on RCM. We then compare with one 
prominent and one recent study of similar 
design. As a set, the studies address issues of 
assignment of students to schools, school pol-
icy, and structure, curriculum, teacher knowl-
edge, and practices. In online Appendix B, we 
then apply our framework to all of the studies 
available online (as of December 19, 2012) for 
upcoming publication in this journal.

Examples

The Effect of Open Court Reading (OCR) on 
Reading Achievement

Borman et al. (2008) motivated their ran-
domized experiment of the OCR curriculum on 
reading achievement by noting

The Open Court Reading (OCR) program, published 
by SRA/McGraw-Hill, has been widely used since 
the 1960s and offers a phonics-based K-6 curriculum 
that is grounded in the research-based practices cited 
in the National Reading Panel report. (National 
Reading Panel, 2000, p. 390)

Furthermore, the program is quite popular: 
“To date, a total of 1,847 districts and over 
6,000 schools have adopted the OCR program 
across the United States” (National Reading 
Panel, 2000, p. 390). And yet, from the perspec-
tive of internal validity, Borman et al. (2008) 
stated “despite its widespread dissemination, 
though, OCR has never been evaluated rigor-
ously through a randomized trial” (National 
Reading Panel, 2000, p. 390).

Based on an analysis of 49 classrooms ran-
domly assigned to OCR versus business as 
usual, Borman et al. (2008) found OCR 
increased students’ composite reading score 
across all grades by 7.95 points (in Table 4 of 
Borman et al., 2008). This effect was about 1/7 
of the standard deviation on the achievement 
test, equivalent to 1/8 of a year’s growth and 
was statistically significant (p < .001, t-ratio of 
4.34). Borman et al. concluded that OCR affects 
reading outcomes: “The outcomes from these 
analyses not only provide evidence of the prom-
ising one-year effects of OCR on students’ read-
ing outcomes, but they also suggest that these 
effects may be replicated across varying con-
texts with rather consistent and positive results” 
(p. 405).

In making their inference, Borman et al. 
(2008) were explicitly concerned with how well 
their sample represented broad populations of 
classrooms. Thus, they randomly sampled from 
schools that expressed interest to the Open Court 
developer SRA/McGraw-Hill. Partly as a result 
of the random sample, schools in Borman et al.’s 
sample were located across the country (Florida, 
Georgia, Indiana, Idaho, North Carolina, and 

(14)
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Texas) and varied in socioeconomic status. 
Furthermore, Borman et al. carefully attended to 
sample attrition in their analyses.

Even given Borman et al.’s (2008) attention 
to their sample, there may be important con-
cerns about the external validity of Borman et 
al.’s inference. In particular, schools that had 
approached SRA/McGraw-Hill prior to Borman 
et al.’s study may have had substantive reasons 
for believing OCR would work particularly well 
for them (e.g., Heckman, 2005). At the very 
least, if Borman et al.’s study had any effect on 
adoption of OCR, then one could not be certain 
that the poststudy population (p′) was repre-
sented by the prestudy population (p), because 
the prestudy population did not have access to 
Borman et al.’s results. This is a fundamental 
limitation of external validity; a researcher can-
not simultaneously change the behavior in a 
population and claim that the prestudy popula-
tion fully represents the poststudy population. 
Given the limitation for a sample in a random-
ized experiment to represent nonvolunteer or 
poststudy populations, debate about a general 
effect of OCR is inevitable.

To inform debate about the general effect of 
OCR, we quantify the proportion of Borman et 
al.’s (2008) estimate that must be due to sam-
pling bias to invalidate their inference. We begin 
by choosing statistical significance as a thresh-
old for inference because it reflects sampling 
error (although we will comment at the end of 
this Section on how other thresholds can be 
used). Given Borman et al.’s sample size of 49 
(and 3 parameters estimated) and standard error 
of 1.83, the threshold for statistical significance 
is δ# = se × tcritical, df = 46 = 1.83 × 2.013 = 3.68. 
Given the estimated effect (δ̂) was 7.95, to 
invalidate the inference bias must be greater 
than 7.95 − 3.68 = 4.27, which is 54% of the 
estimate.

Drawing on the general features of our 
framework, to invalidate Borman et al.’s (2008) 
inference of an effect of OCR on reading 
achievement, one would have to replace 54% of 
the cases in study, and assume the limiting con-
dition of zero effect of OCR in the replacement 
cases. Applying Equation (10), the replacement 
cases would come from the nonvolunteer popu-
lation (p′). That is, 54% of the observed volun-
teer classrooms in Borman et al.’s study must be 

unexchangeable with the unobserved nonvolun-
teer classrooms in the sense that it is necessary 
to replace those 54% of cases with unobserved 
cases for the inference to be valid a population 
that includes nonvolunteer cases.

To gain intuition about sample replacement, 
examine Figure 2 which shows distributions for 
business as usual and Open Court before and 
after sample replacement. The dashed line rep-
resents the observed data based on parameter 
estimates from Borman et al.’s (2008) multi-
level model, including pretest as a covariate 
(data were simulated with mean for business as 
usual = 607; mean for Open Court = 615—see 
Borman et al., 2008). The replacement data 
were constructed to preserve the original mean 
of roughly 611 and standard deviation (assumed 
to be 6.67 based on Borman et al.’s results and 
assuming equal variance within groups).3

The black bars in Figure 2 represent the 46% 
(n = 19) of classrooms that were not replaced, 
and the gray bars represent the 54% (n = 30) 
replacement classrooms randomly selected from 
a hypothetical population of classrooms that did 
not volunteer for the study (p′).4 For business as 
usual, the mean for the replacement data was 
about 4 points greater than the observed data. 
For OCR, the mean for the replacement data 
was about 3 points less than the observed data, 
narrowing the difference between the curricula 
by about 7 points (the data with the replacement 
values were associated with t-ratio of 1.86 with 
a p value of .068). The graphic convergence of 
the distributions represents what it means to 
replace 54% of the data with data for which 
there is no effect.

We now compare the robustness of Borman 
et al.’s (2008) inference with the robustness of 
inferences from two other randomized experi-
ments: Finn and Achilles’ (1990) prominent 
study of the effects of small classes on achieve-
ment in Tennessee, and Clements and Sarama’s 
(2008) relatively recent study of the effects of 
the Building Blocks curriculum on preschool-
ers’ mathematical achievement. The latter offers 
an important contrast to the scripted OCR cur-
riculum because it is molded through continu-
ous interaction between developers and teachers 
who implement the curriculum.

For comparison of robustness across studies, 
we conduct our analysis using the standardized 
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metric of a correlation.5 As shown in Table 1, 
47% of Borman et al.’s (2008) estimated correla-
tion between OCR and achievement must be due 
to bias to invalidate their inference. By compari-
son, 64% of Finn and Achilles’ (1990) estimate 
must be due to bias to invalidate their inference, 
and Clements and Sarama’s (2008) inference 
would be invalid even if only 31% of their esti-
mate were due to sampling bias. Note that these 
are merely statements about the relative robust-
ness of the causal inferences. To inform policy 
related to curricula or small classes, administra-
tors and policymakers should take into account 
the characteristics of the study designs (e.g., what 
Shadish, Cook, & Campbell, 2002, refer to as 
surface similarity), as well as the costs of imple-
menting a particular policy in their contexts.

The Effect of Kindergarten Retention on 
Reading Achievement

We now quantify the robustness of an inferred 
negative effect of kindergarten retention on 

achievement from an observational study. 
Similar to the Open Court Curriculum, kinder-
garten retention is a large scale phenomenon, 
with the U.S. Department of Health and Human 
Services (2000) estimating that 8% of second 
graders (more than 500,000) were a year behind 
their expected grade level as a result of not 
being promoted, known as retention, in kinder-
garten or first grade (see also Alexander, 
Entwisle, & Dauber, 2003). Furthermore, a dis-
proportionate percentage of those retained are 
from low socioeconomic backgrounds and/or 
are racial minorities (Alexander et al., 2003, 
chapter 5). As Alexander et al. (2003) wrote, 
“next to dropout, failing a grade is probably the 
most ubiquitous and vexing issue facing school 
people today” (p. 2).

Given the prevalence and importance of 
retention, there have been considerable studies 
and syntheses of retention effects (e.g., 
Alexander et al., 2003; Holmes, 1989; Holmes 
& Matthews, 1984; Jimerson, 2001; Karweit, 
1992; Reynolds, 1992; Roderick, Bryk, Jacobs, 

FIGURE 2. Example replacement of cases from nonvolunteer schools to invalidate inference of an effect of 
the open court curriculum.
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Easton, & Allensworth, 1999; Shepard & Smith, 
1989). Yet, none of these studies has been con-
clusive, as there has been extensive debate 
regarding the effects of retention, especially 
regarding which covariates must be conditioned 
on (e.g., Alexander, 1998; Alexander et al., 
2003; Shepard, Smith, & Marion, 1998).

Because of the ambiguity of results, a study 
of the effects of kindergarten retention that used 
random assignment to conditions at any level of 
analysis would be welcome. However, as 
Alexander et al. (2003) wrote,

Random assignment, though, is not a viable strategy 
[for studying retention] because parents or schools 
would not be willing to have a child pass or fail a 
grade at the toss of a coin, even for purposes of a 
scientific experiment (see Harvard Education Letter, 
1986:3, on the impracticality of this approach). Also, 
human subjects review boards and most investigators 
would demur for ethical reasons. (p. 31)

This is a specific example of Rubin’s (1974) 
concerns about implementing randomized 
experiments as well as Cronbach’s (1982) skep-
ticism about the general feasibility of random 
assignment to treatments.

In the absence of random assignment, we 
turn to studies that attempted to approximate the 

conditions of random assignment using statisti-
cal techniques. Of the recent studies of retention 
effects (Burkam, LoGerfo, Ready, & Lee, 2007; 
Jimerson, 2001; Lorence, Dworkin, Toenjes, & 
Hill, 2002), we focus on Hong and Raudenbush’s 
(2005) analysis of nationally representative data 
in the Early Childhood Longitudinal Study 
(ECLS), which included extensive measures of 
student background, emotional disposition, 
motivation, and pretests.

Hong and Raudenbush (2005) used the mea-
sures described above in a propensity score 
model to define a “retained counterfactual” 
group representing what would have happened 
to the students who were retained if they had 
been promoted (e.g., Holland, 1986; Rubin, 
1974). As represented in Figure 3, Hong and 
Raudenbush estimated that the “retained 
observed” group scored 9 points lower on read-
ing achievement than the “retained counterfac-
tual” group at the end of first grade.6 The esti-
mated effect was about two thirds of a standard 
deviation on the test, almost half a year’s 
expected growth (Hong & Raudenbush, 2005), 
and was statistically significant (p < .001, with 
standard error of.68, and t-ratio of −13.67).7 
Ultimately, Hong and Raudenbush concluded 

FIGURE 3. Effect of retention on reading achievement in retention schools (from Hong & Raudenbush, 2005, 
Figure 2, p. 218).
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that retention reduces achievement: “Children 
who were retained would have learned more 
had they been promoted” (p. 200).

Hong and Raudenbush (2005) did not use the 
“Gold Standard” of random assignment to treat-
ment conditions (e.g., Eisenhart & Towne, 
2008; U.S. Department of Education, 2002). 
Instead, they relied on statistical covariates to 
approximate equivalence between the retained 
and promoted groups. However, they may not 
have conditioned for some factor, such as an 
aspect of a child’s cognitive ability, emotional 
disposition, or motivation, which was con-
founded with retention. For example, if children 
with high motivation were less likely to be 
retained and also tended to have higher achieve-
ment, then part or all of Hong and Raudenbush’s 
observed relationship between retention and 
achievement might have been due to differences 
in motivation. In this sense, there may have 
been bias in the estimated effect of retention due 
to differences in motivation prior to, or in the 
absence of, being promoted or retained.

Our question then is not whether Hong and 
Raudenbush’s (2005) estimated effect of reten-
tion was biased because of variables omitted 
from their analysis. It almost certainly was. Our 
question instead is “How much bias must there 
have been to invalidate Hong and Raudenbush’s 
inference?” Using statistical significance as a 
threshold for Hong and Raudenbush’s sample of 
7,639 (471 retained students and 7,168 promoted 
students, Hong & Raudenbush, 2005, p. 215), 
and standard error of .68, δ# = se × tcritical, df = 7,600 = 
.68 × (−1.96) = −1.33. Given the estimated effect 
of −9, to invalidate the inference, bias must have 
accounted for −9 − 1.33 = −7.67 points on the 
reading achievement measure, or about 85% of 
the estimated effect (−7.67 / −9 = .85).

Drawing on the general features of our 
framework, to invalidate Hong and Raudenbush’s 
(2005) inference of a negative effect of kinder-
garten retention on achievement one would 
have to replace 85% of the cases in their study, 
and assume the limiting condition of zero effect 
of retention in the replacement cases. Applying 
Equation (15), the replacement cases would 
come from the counterfactual condition for the 
observed outcomes. That is, 85% of the observed 
potential outcomes must be unexchangeable 
with the unobserved counterfactual potential 

outcomes such that it is necessary to replace 
those 85% with the counterfactual potential out-
comes to make an inference in this sample. Note 
that this replacement must occur even after 
observed cases have been conditioned on back-
ground characteristics, school membership, and 
pretests used to define comparable groups.

Figure 4 shows the replacement distributions 
using a procedure similar to that used to gener-
ate Figure 2, although the gray bars in Figure 4 
represent counterfactual data necessary to 
replace 85% of the cases to invalidate the infer-
ence (the difference between the retained and 
promoted groups after replacement is −1.25, p = 
.064). The left side of Figure 2 shows the 7.2 
point advantage the counterfactual replacement 
cases would have over the students who were 
actually retained (yretained | × = promoted −  
y retained | x = retained = 52.2 − 45.0 = 7.2). This 
shift of 7.2 points works against the inference by 
shifting the retained distribution to the right, 
toward the promoted students (the promoted 
students were shifted less than the retained stu-
dents to preserve the overall mean).8

Our analysis appeals to the intuition of those 
who consider what would have happened to the 
promoted children if they had been retained, as 
these are exactly the RCM potential outcomes 
on which our analysis is based. Consider test 
scores of a set of children who were retained that 
are considerably lower (9 points) than others 
who were candidates for retention but who were 
in fact promoted. No doubt some of the differ-
ence is due to advantages the comparable others 
had before being promoted. But now to believe 
that retention did not have an effect, one must 
believe that 85% of those comparable others 
would have enjoyed most (7.2) of their advan-
tages whether or not they had been retained. This 
is a difference of more than a 1/3 of a year’s 
growth.9 Although interpretations will vary, our 
framework allows us to interpret Hong and 
Raudenbush’s (2005) inference in terms of the 
ensemble of factors that might differentiate 
retained students from comparable promoted 
students. In this sense, we quantify the robust-
ness of the inference in terms of the experiences 
of promoted and retained students and as might 
be observed by educators in their daily practice.

We now compare the robustness of Hong 
and Raudenbush’s (2005) inference with the 
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robustness of inferences from two other obser-
vational studies: Morgan’s (2001) inference of 
a Catholic school effect on achievement (build-
ing on Coleman et al., 1982), and Hill, Rowan, 
and Ball’s (2005) inference of the effects of a 
teacher’s content knowledge on student math 
achievement. Hill et al.’s focus on teacher 
knowledge offers an important complement to 
attention to school or district level policies such 
as retention because differences among teach-
ers are important predictors of achievement 
(Nye, Konstantopoulos, & Hedges, 2004).

As shown in Table 2, Morgan’s (2001) infer-
ence and Hill et al.’s (2005) inference would not 
be valid if slightly more than a third of their 
estimates were due to bias. By our measure, 
Hong and Raudenbush’s (2005) inference is 
more robust than that of Morgan or Hill et al. 
Again, this is not a final proclamation regarding 
policy. In choosing appropriate action, policy-
makers would have to consider the relative 
return on investments of policies related to 
retention, incentives for students to attend 

Catholic schools, and teachers’ acquisition of 
knowledge (e.g., through professional develop-
ment). Furthermore, the return on investment is 
not the only contingency, as decision makers 
should consider the elements of the study 
designs already used to reduce bias. For exam-
ple, we call attention to whether the observa-
tional studies controlled for pretests (as did 
Hong and Raudenbush, 2005, as well as Morgan, 
2001) which have recently been found to be 
critical in reducing bias in educational studies 
(e.g., Shadish, Clark, & Steiner, 2008; Steiner, 
Cook, & Shadish, 2011; Steiner, Cook, Shadish, 
& Clark, 2010).

Expanded the Details of Our Framework

Choosing a threshold relative to transaction 
costs. The general framework we have proposed 
can be implemented with any threshold. 
However, given that educational research should 
be pragmatic, the threshold might depend on the 
size of the investment needed to manipulate 

FIGURE 4. Example replacement of cases with counterfactual data to invalidate inference of an effect of  
kindergarten retention.
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What Would It Take to Change an Inference?

policy or practice. Individuals or families might 
be comfortable with a lower threshold than 
policymakers considering diverting large 
resources to change the experiences of many 
people. Therefore, the following is a guide for 
increasing thresholds based on the transaction 
costs of program change.

1.  changing beliefs, without a correspond-
ing change in action,

2.  changing action for an individual (or 
family),

3.  increasing investments in an existing 
program,

4.  initial investment in a pilot program 
where none exists, and

5.  dismantling an existing program and 
replacing it with a new program.

Note that the first level does not even con-
stitute a change in action. In this sense, it is 
below a pragmatic threshold. The values of the 
thresholds needed to invalidate an inference 
increase from Levels 2 through 5 as the actions 
require greater resources. An inference should 
be more robust to convince a policymaker to 
initiate a whole scale change in policy than to 
convince a family to choose a particular  
treatment.

Nonzero null hypotheses. For Hong and 
Raudenbush’s (2005) inference of a negative 
effect of retention on achievement, consider a 
null hypothesis adequate for increasing 
investment in an existing program. For example, 
define the threshold by δ > −6, where 6 units 
represents about one fourth of a year of growth, 
slightly less than half a standard deviation on 
Hong and Ruadenbush’s outcome. For a null 
hypothesis defined by δ > −6, the threshold 
for statistical significance is (se × tcritical, df = 
7,639) = .68 × (−1.645) = −1.12 (using a one-
tailed test). Therefore, δ# = −6 − 1.12 = −7.12, and  
1 − δ# / δ̂ = 1 − (−7.12 / −9) = .21. The result is 
that 21% of the estimated kindergarten retention 
effect would have to be due to differences 
between the students before being retained or 
promoted to invalidate the inference that 
retention has an effect using a threshold of −6. 
Thus, quantifying the robustness of an inference 
for nonzero hypotheses can represent uncertainty 

about qualitative policy decisions based on 
fixed thresholds.

Failure to reject the null hypothesis when in fact 
the null is false. We have focused on the extent 
of bias necessary to create a type I error 
(rejecting the null hypothesis when in fact the 
null hypothesis is true). It is important note, 
however, that bias could also hide a substantively 
important negative effect. This is an example of 
type II error, failure to reject the null when in 
fact the null hypothesis is false. Critically, from 
an ethical or policy perspective type II errors 
may require different thresholds than type I 
errors. For example, in medical trials, the 
threshold for discontinuing a trial due to 
potential harm is not as conservative as criteria 
used to infer a positive treatment effect (Federal 
Register, 1998).

When there is concern that bias may have 
hidden a negative effect, one could define δ# as 
the threshold for inferring a negative effect of a 
treatment and then quantify the bias necessary 
to have created a false inference that there is no 
negative effect. For example, if a value of δ# of 
−4 would be strong enough to infer a negative 
effect and the estimate were −3, then the bias 
necessary to invalidate the inference would be 
1−δ# / δ̂ = 1 − (−4) / −3) = −1/3. If one third of 
the original estimate is due to bias, then the 
inference of no negative effect is invalid. 
Alternatively, one could report the coefficient 
by which the estimate would have to be multi-
plied to exceed the threshold for inference. This 
is simply the ratio of the observed estimate to its 
threshold. For example, one would have to mul-
tiply an observed effect of −3 by 1.33 to make it 
exceed the threshold of −4.

Nonzero effect in the replacement (nonvolunteer) 
population. In our examples so far, we have 
assumed that replacement cases have a zero 
treatment effect. However, our general 
framework also applies to the conditions 
necessary to invalidate an inference if one 
assumes a nonzero treatment effect in the 
replacement population. This can be illustrated 
in Equation (7). Setting the combined population 
treatment effect to be less than the threshold for 
inference (δ < δ#) and solving for the proportion 
of the original sample to be replaced (1 − πp) 
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yield that the inference is invalid if 1 − πp < 
(δp − δ#) / (δ p − δp′).

In Borman et al.’s (2008) example, assume 
the effect of OCR in the nonvolunteer popula-
tion, δp′, is −2, and that δ# = 3.68 and δp = 7.95 
(both as in the initial example). Under these 
conditions, the inference is invalid if 1 − πp < 
(7.95 − 3.68) / (7.95 − −2) = .43; the inference 
would be invalid if more than 43% of the sam-
ple were replaced with cases for which the 
effect of OCR was −2. Intuitively, to invalidate 
the inference, one would have to replace a 
smaller percentage (43% vs. 54%) if there is a 
negative versus zero effect in the replacement 
cases.

Discussion

Judgment is required to interpret any causal 
inference in educational policy research. For 
instance, Borman et al.’s (2008) inference that 
the effects of OCR “may be replicated across 
varying contexts with rather consistent and 
positive results,” (p. 405) may not apply to 
schools that did not volunteer for participation 
in OCR. Hong and Raudenbush’s (2005) infer-
ence that “children who were retained would 
have learned more had they been promoted” (p. 
200) may be invalid if some other factor affected 
the likelihood of retention and achievement.

To inform interpretation of inferences, we 
have quantified how much bias must be present 
to invalidate an inference. How much of Borman 
et al.’s (2008) estimate must be due to unusual 
effectiveness in their sample to invalidate their 
inference? The answer is 54%. Interpreting in 
terms of our framework, to infer that OCR does 
not have a general effect pertaining to a popula-
tion that includes volunteer and nonvolunteer 
schools, one would have to replace 54% of the 
volunteer classrooms in Borman et al.’s study 
with nonvolunteer classrooms in which there 
was no effect of OCR. This adds precision to 
Borman et al.’s language of “may be replicated” 
and “rather consistent.”

How much of Hong and Raudenbush’s 
(2005) estimate must be due to bias to invalidate 
their inference? The answer is 85%. Interpreting 
in our framework in terms of counterfactual 
data, to believe that retention did not have an 
effect, one would have to believe that 85% or 

more of promoted students (who were compa-
rable to retained students in terms of back-
ground, emotional disposition, school member-
ship, and pretests) would have held most of their 
advantage whether or not they repeated a year of 
kindergarten.

The bias necessary to invalidate an inference 
should be evaluated relative to the study design. 
The sampling bias necessary to invalidate 
Borman et al.’s (2008) inference from a ran-
domized experiment on a volunteer sample 
should be evaluated relative to the characteris-
tics of the sample and desired population, as 
well as the sampling mechanism. They did 
include a range of socioeconomic status and 
region which should make their data representa-
tive of broader populations, but all of the 
schools in their study volunteered for the study, 
potentially differentiating them from nonvolun-
teer schools. Quantifying this concern, 54% of 
the volunteer schools would have to be unrepre-
sentative of the volunteer schools to invalidate 
the inference.

Similarly, the extent of selection bias neces-
sary to invalidate Hong and Raudenbush’s 
(2005) inference should be evaluated relative to 
the mechanism of treatment assignment, as well 
as the statistical controls used to reduce selec-
tion bias. Hong and Raudenbush did control for 
background, emotional disposition and pretests, 
ruling out many of the most ready explanations 
for differences between the retained and pro-
moted students. However, questions may persist 
about remaining, uncontrolled differences. 
Quantifying this concern, 85% of the observed 
students would have to be replaced with unbi-
ased counterfactual cases (for which there was 
no treatment effect) to invalidate the inference.

Evaluating the robustness of an inference 
relative to study design has two important 
implications. First, there is limited value in 
directly comparing the bias necessary to invali-
date an inference between studies of different 
designs (e.g., randomized experiments and 
observational studies). Second, the more bias 
favoring the treatment the study has accounted 
for the less robust the inference will appear to 
be, because adjusting for bias moves the esti-
mate closer to the threshold for inference. In this 
context, larger explained variance in the out-
come (R2) is one indicator of a good model for 
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an observational study because it suggests that 
many of the most important explanations of the 
outcome have been accounted for.

Relation to Other Approaches

Bounding an effect. Altonji, Elder, and Taber 
(2005) and Altonji, Conley, Elder, and Taber 
(2010) bounded estimated effects by drawing on 
information associated with observed confounds 
(cf. Manski, 1990, who bounds based on the 
maximum value of the outcome). Consistent 
with this, Hong and Raudenbush (2005), reported 
how their estimate would have changed if it was 
reduced by an omitted variable comparable with 
their most important covariate. In our own 
analysis (reported in endnote ix), the estimated 
retention effect was reduced by .074 when we 
added emotional disposition to a model already 
including pretests, background characteristics, 
and fixed effects for schools. If unobserved 
confounds accounted for as much reduction, the 
lower bound of the kindergarten retention effect 
would be −9.320 + .074 = −9.246.

Of course, the preceding analysis is only as 
good as the assumption that bias associated with 
unobserved confounders is no greater than bias 
associated with observed confounders. Such 
would not be the case if there were some unique 
factor associated with kindergarten retention 
that was not captured in the general controls 
included in ECLS-K. Or if there were an omit-
ted factor whose effect on being retained was 
not substantially absorbed by the pretests in 
ECLS-K.10 This forces consumers of research to 
carefully consider how potential confounders 
available in a data set were selected from the set 
of all possible confounders (Altonji et al., 2010; 
see also Steiner et al.’s 2010 attention to factors 
affecting choice of treatments).

Generally, while we recognize the great 
value of bounding an effect, bounding an effect 
supports a different understanding than quanti-
fying the robustness of an inference. The lower 
bound of −9.246 provides information about a 
worst (or best) case scenario, whereas we incor-
porate different effects as thresholds in our 
framework and then quantify the bias necessary 
to reduce an estimate below the threshold. 
Ultimately, we believe both can be useful to 
researchers and policymakers.

Other sensitivity analyses. Typical sensitivity 
analyses are expressed in terms of the properties 
of the omitted variables that could alter an 
inference either because they affected selection 
into the sample or assignment to treatments or 
both (e.g., Copas & Li, 1997; Holland, 1989; 
Lin, Psaty, & Kronmal, 1998; Robins, Rotnisky, 
& Scharfstein, 2000; Rosenbaum, 1986, 2002; 
Rosenbaum & Rubin, 1983; Scharfstein, 2002). 
For example, Rosenbaum (1986) wrote,

The inclusion of an omitted variable U, which is as 
predictive as the most predictive covariate in the 
short list of covariates excluding the pretest, would 
have a relatively modest impact on the estimated 
effect [of dropout on cognitive test scores] unless 
that variable had a substantially larger dropout-
versus-stayer difference than any covariate under 
study. (p. 221)

Rosenbaum’s statement is complex partly 
because one must consider two relationships 
associated with an omitted variable: the relation-
ship with the predictor of interest (e.g., dropout), 
and the relationship with the outcome (e.g., cog-
nitive test scores). Technically, this can be dealt 
with by conducting dual sensitivity (Gastwirth, 
Krieger, & Rosenbaum, 1998) or by characteriz-
ing sensitivity analysis in terms of the product of 
the two relationships (Frank, 2000; Hirano & 
Imbens, 2001; Imai, Keele, & Yamamoto, 2010). 
But the critical limitation of most sensitivity 
analyses is that they are cast in terms of proper-
ties of the variables (e.g., correlations associated 
with the variables), appealing to those who think 
in terms of relationships among factors.

Our framework appeals to an alternative 
intuition than most sensitivity analyses: We 
express sensitivity in terms of properties of the 
units of observation (e.g., people or classrooms) 
instead of variables, and we interpret in terms of 
motives, experiences, and outcomes of the peo-
ple responsible for action (Abbott, 1998). This 
may especially appeal to those who engage 
schools and students in their daily practice. For 
example, a principal may naturally consider 
how her school compares with a neighboring 
school in deciding whether to adopt one of its 
policies. Just so, she may be able to consider 
how well the schools which volunteered for a 
study represent her own, and may draw on our 
framework to quantify her consideration.
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External validity based on propensity to be in a 
study. Hedges and O’Muircheartaigh (2011) 
used the estimates from a particular propensity 
stratum to generalize to a corresponding 
unstudied population. This is a clever approach 
to exploring the external validity of an inference 
based on the propensity for being in a study (see 
also Pearl & Bareinboim, 2010; Stuart, Cole, 
Bradshaw, & Leaf, 2011). For example, one 
might use estimated effects of small classes in 
Tennessee (Finn & Achilles, 1990) for certain 
strata based on background characteristics to 
project a score for California.

Our approach differs from that of Hedges 
and O’Muircheartaigh (2011) in two ways. 
First, Hedges and O’Muircheartaigh project an 
estimate to a population outside the study, 
whereas we consider what would happen if the 
outside population were brought into the study. 
In this sense, Hedges and O’Muircheartaigh 
appeal to differential treatment effects (e.g., 
Cronbach, 1982) and we seek to identify general 
effects across populations (e.g., Cook & 
Campbell, 1979).

Second, Hedges and O’Muircheartaigh 
(2011) assume one has all of the information 
about the unstudied target population that is 
relevant for participation in the study and affects 
the treatment estimate. This is similar to the 
strong assumption of ignorability (Rosenbaum 
& Rubin, 1983)—that other factors can be 
ignored conditioning on the observed factors. 
Thus, the question can still arise as to how much 
unobserved factors could have affected partici-
pation in the study as well as the treatment 
effect. For example, there may be subtle unob-
served factors that affected whether schools 
volunteered for Borman et al.’s (2008) study. 
And sensitivity to these factors can be assessed 
using our approach.

Other Sources of Bias

We attended to two fundamental sources of 
bias in using RCM to interpret the bias neces-
sary to invalidate an inference—restricted sam-
ples and nonrandom assignment to treatment. 
But bias can come from alternative sources. We 
briefly discuss three of those sources below: 
violations of SUTVA, measurement error, and 
differential treatment effects.

Violations of SUTVA. Our analysis concerns how 
estimates would change if observations were 
replaced with hypothetical or counterfactual 
cases. But estimates could also change if 
observed outcomes changed when others’ 
assignments were altered. For example, the 
achievement of the students who were actually 
retained could change if some promoted students 
were retained. This could occur if one child’s 
retention reduced the stigma of another, or 
competed with the resources, such as the 
attention of the teacher (Shepard & Smith, 
1989). Changes in observed outcomes as a 
result of others’ assignments to treatment 
conditions constitute a violation of SUTVA, an 
assumption made for most inferences. As such, 
there are some (recent) techniques to inform the 
implications of violations to SUTVA. For 
example, one can use agent-based models to 
explore the dynamic implications of changes in 
treatment assignments (e.g., Maroulis et al., 
2010).

Measurement error. Error in measurement, 
especially of the outcomes, could bias estimates. 
Generally, measurement error will lead to 
conservative inferences because it reduces 
precision of estimates. This might be preferred if 
one wanted to be cautious in implementing new 
programs. But measurement error could hide a 
substantively important negative effect (an 
example of a type II error, failure to reject the 
null when in fact the null hypothesis is false).

Measurement error is not a large concern for 
the two focal examples in the article in which 
the outcomes were measured with high reliabil-
ity. The reliability of the Terra Nova compre-
hensive reading test used by Borman et al. 
(2008) was very high (.84-.93 across Grades 
3–6—SRA/McGraw-Hill, 2001), and would 
likely be higher at the classroom level given 
fairly large sample sizes per classroom (see 
Brennan, 1995, for a discussion). Similarly, the 
test used by Hong and Raudenbush (2005) had 
a reliability of .95 (based on the variance of 
repeated estimates of overall ability—see 
ECLS-K user guide [2001], Section 3.1.6). 
Furthermore, both Borman et al., and Hong and 
Raudenbush increased precision by controlling 
for a pretest (which also could reduce the poten-
tial for nonnormality—see Borman et al., 2008).
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Differential treatment effects. To isolate the 
bias due to baseline differences, we assumed 
that the treatment effect for the treated equaled 
the treatment effect for the control. This would 
be violated if people chose treatments that are 
likely to be good for them for idiosyncratic or 
difficult to observe reasons (Heckman, 2005; 
Heckman, Urzua, & Vytlacil, 2006). For 
example, Hong and Raudenbush’s (2005) 
estimated effect of kindergarten retention could 
be upwardly biased if those who were retained 
might have benefited more (or suffered less) 
from retention than those who were promoted 
for subtle idiosyncratic reasons. In response, 
one could use propensity score techniques to 
separately estimate treatment effects for the 
treated and for the control (e.g., Morgan, 2001). 
After doing so, one could apply our framework 
to either estimate (e.g., Frank et al., 2008).

Conclusion

Causal inference in policy analysis does not 
depend on a single researcher or study. For edu-
cation research to inform policy, it should 
emerge through debate among a community of 
scholars about the relative merits of different 
studies (e.g., Greco, 2009; Habermas, 1987; 
Kuhn, 1962; Kvanvig, 2003; Sosa, 2007). 
Campbell’s law (1976) states, “The more any 
quantitative social indicator is used for social 
decision-making, the more subject it will be to 
corruption pressures and the more apt it will be 
to distort and corrupt the social processes it is 
intended to monitor” (p. 49). Our corollary is 
“The more any quantitative social indicator is 
used for social decision-making, the greater will 
be the intensity of debate about the inference 
made from the indicator.”

Therefore, we inform debate about causal 
inferences by quantifying the discourse about 
the robustness of the inference, and we provided 
a framework to interpret the robustness. When 
discussing concerns about an observational 
study researchers can speak in terms of the pro-
portion of the cases that would have to be 
replaced with counterfactual data to invalidate 
the inference; and when discussing concerns 
about the generality of effects from a random-
ized experiment researchers can speak in terms 
of the proportion of the sample that would have 

to be replaced to represent a population not 
sampled. Over time, it is our hope that the 
repeated characterization of robustness in such 
terms can contribute to a general language for 
debating inferences from educational research.
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Notes

1. Rubin (2004) would differentiate possible 
outcomes using Y(1) for the treatment and Y(0) for 
the control, but the parenthetical expressions become 
awkward when part of a larger function. Therefore, 
we designate treatment and control with a super-
script. The use of superscripts is as in Winship and 
Morgan (1999).

2. Heckman (1979) also established a relation-
ship between bias due to nonrandom assignment to 
treatment conditions and bias due to sample selec-
tion. In our terms, Heckman defines Z as depending 
on attributes of units. In turn, if the attributes that 
affect the probability of being sampled are not 
accounted for in estimating a treatment effect, they 
are omitted variables. In contrast, we characterize 
bias in terms of the percentage of a sample to be 
replaced and the expected outcomes of the replace-
ment observations. This allows us to evaluate bias 
due to nonrandom sampling (as in 8) or bias due to 
nonrandom assignment to treatments (as in 6) using a 
single framework based on RCM.

3. 
Pooled standard deviation 

 

=

+

standard error

control cases

1 1

ttreatment cases

=
+

=
1 83

1

22

1

27

6 37
.

. .  

We then corrected for the 1 degree of freedom for the 
pretest to generate a value of 6.24: 6.24 = 6.35 (48 / 
49).

4. Given our formulation, (E[Yt | Z = p] −  
E[Yc | Z = p′] = 0), the replacement classrooms were 
assigned to have mean value 610.6 within each cur-
riculum because 610.6 was the average achievement 
of the classrooms that were removed (the standard 
deviations of replacement classrooms within each 
curriculum were also set equal to 6.67 to reproduce 
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the first two moments of distribution of the replaced 
classrooms).

5. We re-express Equation (4) in terms of 1 − r# / r 
where r is the correlation between treatment and out-
come, and r# is defined as the threshold for a statisti-
cally significant correlation coefficient. Correlations 
adjust for differences in scales, and r# depends only 
on the degrees of freedom (sample size and parame-
ters estimated) and alpha level, not the standard error 
of an estimate. The correlation was obtained from the 
ratio of the estimate to its standard error: 
r

t

df t
 = 

+ 2
, and the threshold was obtained using 

the critical value of the t distribution: r
t

df t

#  = critical

critical+ 2
 

(Frank & Min, 2007). For large samples (e.g., greater 
than 1,000) r# / r will be equivalent to δ# / δ̂ to the 
second decimal in most circumstances, but in small 
samples r# / r and δ# / δ̂ will not be equivalent because 
δ is not a scalar multiple of r even though statistical 
inferences based on δ̂ and r are identical. One could 
also adjust the estimated correlation for estimation 
bias in small samples (e.g., Olkin & Pratt, 1958).

6. Hong and Raudenbush (2005) first estimated 
the propensity for a student to be retained using a 
logistic regression of retention on pretreatment per-
sonal, classroom, and school characteristics. The 
predicted values from this regression then became the 
estimated propensity scores. Hong and Raudenbush 
then divided their sample into 15 strata by propensity, 
and then controlled for the stratum, schools as well as 
the individual logit of propensity in using a two-level 
model to estimate the average effect of retention on 
achievement (see pp. 214–218). Hong and 
Raudenbush (2005, Table 4) established common 
support in terms of balance on propensity scores.

7. We separately estimated the effect of reten-
tion is about 2.2 units weaker for an increase of one 
standard deviation on the pretest, an interaction 
effect that is statistically significant but not strong 
enough to overwhelm the large negative effect of 
retention across the sample, so we report only the 
main effect. In addition, at the school level, Hong 
and Raudenbush (2005) conclude that “the average 
effect of adopting a retention policy is null or very 
small” (p. 214).

8. Figure 4 can also be interpreted in terms of a 
weighting of the data according to the frequency of 
occurrence in the replaced cases (shaded area) versus 
the original distribution (dashed line). For example, 
a retained student with a test score of 60 would 
receive a weight of about 2 because there are twice 
as many cases in the shaded bar than in the dashed 
line at 60. In general, the inference would be invalid 
if students who were retained and had high test 
scores received more weight, and students who were 

promoted and had low test scores received more 
weight. Such weights would pull the two groups 
closer together. Intuitively, the inference of a nega-
tive effect of retention on achievement would be 
invalid if the students who were retained and received 
high test scores counted more, and if the students 
who were promoted but received low test scores 
counted more.

9. It can be also valuable to assess the bias neces-
sary to invalidate an inference against the bias 
reduced by controlling for observed and well recog-
nized covariates (Altonji, Conley, Elder, & Taber, 
2010; Frank, 2000; Rosenbaum, 1986). For example, 
we estimated the change in effect of kindergarten 
retention on achievement when including measures 
of a child’s emotional state and motivation after con-
trolling for schools as fixed effects, pretests and what 
Altonji et al. (2010) refer to as “essential” covariates: 
mother’s education, two parent home, poverty level, 
gender, and eight racial categories (Alexander et al., 
2003; Holmes, 1989; Jimerson, 2001; Shepard & 
Smith, 1989). The estimated retention effect dropped 
from of −9.394 (n = 9,298 using the weight C24CW0, 
standard error .448, R2 of .75) to −9.320 (a drop of 
.074) when we included measures of the child’s 
approaches to learning (t1learn), teacher’s and par-
ent’s perceptions of the child’s self control (t1contro, 
p1contro), and the tendency to externalize problems 
(t2extern).

10. We also follow Altonji et al. (2010) in assum-
ing that the unobserved confounds are independent of 
the observed confounds. Any dependence would 
reduce the impacts of observed as well as unobserved 
variables on treatment estimates if all were included 
in a single model.

11. An (2013) conducts an interesting analysis of 
the robustness of the results to unmeasured confound-
ers (see Ichino, Mealli, & Nannicini, 2008; as well as 
Harding’s 2003 adaptation of Frank, 2000).
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